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Abstract 

We study the effectiveness of an M/M/1 queue with working breakdown policy, and consumer 
maintenance along with the proposed encouraged system-size analysis in this article. Breakdown 
occurs only when the primary service provider being at work, It not only stops the primary server, but it 
also eliminates all existing consumers from the entire system. Once the primary service provider breaks 
down, It has been moved for repairs. The alternate the service provider offers consumers a slow 
service working-breakdown service policy (“W-B-S-P”) until the primary service provider is repaired. 
The consumers become impatient (renege) because of the working-breakdown. We develop the 
balance equations by utilizing the stochastic continuous time Markov-chain. Also, The expected system-
size and excepted sojourn-time of a consumer is obtained. Finally, The effect of an encouraged arrival 
and maintenance through numerical and graphical illustrations are presented.  

Keywords: Alternate Server, Encouraged System-Size, Markov-Chain, Impatient Consumers. 

 
1. INTRODUCTION 

An M/M/1 queue with working breakdown policy, and maintenance of impatient 
consumers along with the proposed encouraged system-size analysis in this article. 
However, in most cases, a service provider’s failure does not entirely disrupt a 
consumer’s service. For instance, Existence of malware (viruses) in the system might 
sluggish down the computer’s routine. One more instance is the machine-replacement 
problems. When the primary operator (main machine) fails, it is instantly swapped by 
alternative server (substitute machine). The alternative-server serves slower until the 
primary server is fixed. The idea of working-breakdowns was first presented by [9]. 
The M/G/1 queue with working-breakdown system-size and sojourn-time distributions 
were discussed in [10]. queues with impatience consumers have drawn substantial 
consideration in earlier, where the cause of consumer reneging was too lengthy line 
previously experienced in queue. [1] analyzed the queue where clients become 
impatient because of the nonappearance of service provider, more exactly, because 
of the service provider vacation. [18] studied the M/M/1 queue with server breakdowns 
where consumers are reneging since the server is inaccessible. [16] developed the 
M/M/1 non time dependent model with catastrophes and reneging. [13] analyzed the 
queue where the impatience of consumers happens due to a slower service by the 
processor. They analyzed Markovian queueing models where single, multiple, infinite 
service provider in two-stage (slow and fast) Markovian arbitrary environment with 
impatient consumers. [19] have studied impatience of jobs in working server vacation 
queueing system where reneging is because of the server working server vacation. 
[14] discussed the customer impatient Markovian queue with various and solitary 
working server vacations. Further [11] studied the queueing model with reneging 
clients which combined the structures of balking clients, Bernoulli server provider 
vacation and server interruption. The queue featuring disasters is distinguished by the 
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fact that the existence of catastrophes dismisses all current tasks but also fails the 
server. [17] analyzed the M/M/1 model with catastrophes define the performance of 
the distributed file systems with site catastrophe. [19] developed an M/M/1 queueing 
system with catastrophes was stretched to the M/G/1 system. [2] studied the queueing 
model with negative clients and catastrophes. [12] deliberated the discrete-time 
queueing system with processor breakdowns, arbitrary repair-epochs. [4] discussed 
an M/G/1 queueing model in the multiple stage environment with server disasters. 
Encouraged arrival perception in the queueing model is widely utilized to tempt more 
customers by providing them with certain discounts to obtain an excellent reaction 
from consumers; thus, this will undoubtedly raise the volume of consumers in the 
entire system and improve professional profits. [15, 7] established the M/M/1/N queue 
with encouraged client arrival. [8] analyzed the encouraged consumer arrival queue 
under working server vacations. In [3], a time-independent analysis of an M[x]/G/1 
queue with dual stages of customer facility and vacation was developed. [5] developed 
the “F” type service policy in an M/M/1 retrial orbit line with vacations and reneging 
clients. [6] analyzed the efficiency of encouraged consumer arrival of a general times 
double phase queueing model with T-policy and Bernoulli vacations. The working-
breakdown M/M/1 queue were discussed in [20]. Evaluations regarding the 
exponential distribution employ the features underlying linear structures with arbitrary 
coefficients investigated in [21]. The structure of the paperwork is as follows: Section 
1 covers introduction. Model description in Section 2. Balance equations in Section 3. 
Encouraged system-size probabilities in Section 4. Sojourn-time distribution in Section 
5. Numerical examples in 6. Result and discussions in Section 7. Conclusion in 
Section 8. 
 
2. DESCRIPTION OF THE QUEUEING MODEL  

We develop the model explanation of a queueing system in this part under the 
following structures. Consumers reach at a single server system, in accordance with 
the encouraged arrival process with the rate of 𝜆(1 + 𝜑). Where “𝜑" represents the 
discount rate. The primary server's service times are exponentially distributed with the 
value µa, while consumers are serviced based on FCFS queue discipline. Breakdowns 
occur only while the primary server is on duty. They not just eliminate all current 
consumers from the service facility, but also cause the primary processor to fail. Let 
“d” denotes the inter arrival times between the consecutive breakdowns and it follows 

exponential distribution meant by 𝞯. When the primary server crashes, the service 
provider is sent right away in order to start the repair process. The primary server 
repair times are characterized by an exponential distribution meant by rate γ. The 
service provider is as better as new following the repair process. While the primary 
server is being fixed, the alternate server serves consumers. The alternate server 
serves up the service during the working breakdown, and its service periods are also 
considered to be exponential distribution denoted as µb (≤ µa). Throughout a fixed time, 
the new consumers coming continuously. Upon returning to work after repairs, the 
primary server detects that there are consumers in the system. The alternative service 
processor pauses service and the primary server resumes and activates service with 
rate µa. If there are no consumers in the service facility at the termination of the server 
repair, the primary server back to the system, remain free, and holds for incoming 
consumers. The consumers expected to be impatient at the time of W-B-S-P. Each 
time a consumer reaches to service facility and Recognize that the service system is 
in W-B-S-P, every consumer initiates impatient (renege) timer" X, it is exponential state 
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with rate ξ. Where 𝜙 represents the rate of maintaining consumers from impatience 

(reneging) with the probability 𝜙 + 𝜙1=1 If the alternate service provider is present 
while the working-breakdown earlier the period X pass away, the consumer is 
processed with the rate µb. If the primary service provider back to work after its repair 
process earlier the period X pass away, the primary server starts again and the 
consumer is serviced by the rate of µa. But, if the timer “X” pass away while the primary 
server is being repaired, the consumer leaves the facility and never back again. 

 

Figure 1: State-transition figure. 
 
3. BALANCE EQUATIONS 

In this part, the balance equations are established, Let I(t) be the number of consumers 
in the system and K(t) is the service provider’s state  

K(t) = {
0                primary server is in repair process at time t
1                   primary server is under working at time t

 

Then, the discrete-state process {(I(t); K(t)); t ≥ 0} of a continuous-time turn into the 
Markov chain with state space M = {(i, m); n ≥ 0; m = 0,1}. Figure 1 represents the 

state-transition illustration of the system. Let 𝑃𝑖,𝑚 = lim
𝑡→∞

𝑃(𝐼(𝑡) = 𝑖;  𝐾(𝑡) =

𝑚) symbolize the stationary probabilities of the stochastic Markov process {(I(t); K(t)); 
t ≥0}.  

Then, the corresponding balance equations of the queueing system is, 

(𝛾 + 𝜆(1 + 𝜑))𝑝0,0 = (𝜇𝑏 + 𝜉𝜙)𝑝1,0 + 𝜁 ∑ 𝑝𝑖,1

∞

𝑖=1

,                                                        (1) 

(𝜆(1 + 𝜑) + 𝛾 + 𝜇𝑏 + 𝑖𝜉𝜙)𝑝𝑖,0 = [𝜇𝑏 + (𝑖 + 1)𝜉𝜙]𝑝𝑖+1,0 + 𝜆(1 + 𝜑)𝑝𝑖−1,0  , 𝑖 ≥ 1    (2) 

 
𝜆(1 + 𝜑)𝑝0,1 =  𝜇𝑎𝑝1,1 + 𝛾𝑝0,0                                                                (3) 

 
(𝜆(1 + 𝜑) + 𝜁 + 𝜇𝑎)𝑝𝑖,1 =  𝜇𝑎𝑝𝑖−1,1 + 𝜆(1 + 𝜑)𝑝𝑖−1,1 + 𝛾𝑝𝑖,0      , 𝑖 ≥ 1,                     (4) 

define the Probability generating functions 
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𝑃0(𝑧) =  ∑ 𝑧𝑖𝑝𝑖,0

∞

𝑛=0

,    𝑃1(𝑧) = ∑ 𝑧𝑖𝑝𝑖,1

∞

𝑖=1

 

With 𝑃0(1) + 𝑃1(1) + 𝑝0,1 = 1 𝑎𝑛𝑑  𝑃0
′(𝑧) = ∑ 𝑖𝑧𝑖−1∞

𝑖=1 𝑝𝑖,0 Product the equations (1) and 

(2) by 1,𝑧𝑖,representing, Adding over “i” and reordering the parts, we get 

    𝜉𝜙𝑧(1 − 𝑧)𝑃0
′(𝑧) − [𝜆(1 + 𝜑) ∗ 𝑧(1 − 𝑧) − 𝜇𝑏(1 − 𝑧) + 𝛾𝑧]𝑃0(𝑧) 

 = 𝜇𝑏(1 − 𝑧)𝑝0,0 − 𝜁𝑧𝑃1(1)                                      (5) 

If z≠1 and z≠ 0 (5) are able to be expressed as. 

𝑃0
′(𝑧) =

[𝜆(1 + 𝜑)𝑧(1 − 𝑧) − 𝜇𝑏(1 − 𝑧) + 𝛾𝑧]𝑃0(𝑧) + 𝜇𝑏(1 − 𝑧)𝑝0,0 − 𝜁𝑧𝑃1(1)

𝑧𝜉𝜙(1 − 𝑧)
.      (6) 

Similarly, we got from (3)-(4)    

[𝜆(1 + 𝜑) ∗ 𝑧(1 − 𝑧) − 𝜇𝑎(1 − 𝑧) + 𝜁𝑧]𝑃1(𝑧) = −𝜆(𝜑 + 1)𝑧(1 − 𝑧)𝑝0,1 + 𝑧𝑃𝑜(𝑧)𝛾.  (7) 

We get 

𝑃1(𝑧) =
−𝜆(1 + 𝜑) ∗ (1 − 𝑧)𝑧𝑝0,1 + 𝛾𝑧𝑃𝑜(𝑧)

𝜆(1 + 𝜑) ∗ 𝑧(1 − 𝑧) − 𝜇𝑎(1 − 𝑧) + 𝜁𝑧
.                                       (8) 

put z=1 in (8), we obtain 

𝛾𝑃0(1) = 𝜁𝑃1(1)                                                                                 (9) 

Remark 3.1.The existing queueing system becomes to M/M/1 queue with working-

breakdown if we put 𝜑 = 0, 𝜙 = 0 𝑜𝑟 ξ=0. This is a particular case of reference [10].  

differential equation’s solution, 

Both the sides multiplying equation (6) by  𝑒
∫[

−𝜆(1+𝜑)

𝜉𝜙
+

𝜇𝑏
𝜉𝜙𝑥

−
𝛾

𝜇𝑏(1−𝑧)
]𝑑𝑧

= 𝑐𝑒
−𝜆(1+𝜑)

𝜉𝜙
𝑧
(1 −

𝑧)
𝛾

𝜉𝜙𝑧
𝜇𝑏
𝜉𝜙, where “c” is a constant term,  

𝑑

𝑑𝑧
[𝑒

−𝜆(1+𝜑)
𝜉𝜙

𝑧
(1 − 𝑧)

𝛾
𝜉𝜙𝑧

𝜇𝑏
𝜉𝜙𝑃0(𝑧)]   

=
(1 − 𝑧) ∗ 𝜇𝑏𝑝0,0 − 𝜁𝑧𝑃1(1)

𝜉𝜙𝑧(1 − 𝑧)
𝑒

−𝜆(1+𝜑)
𝜉𝜙

𝑧
(1 − 𝑧)

𝛾
𝜉𝜙𝑧

𝜇𝑏
𝜉𝜙              (10) 

Integrating both the sides of equation (10) from limit 0 to z and then rearranging the 
entire terms implies  

     𝑃0(𝑍) = (1 − 𝑧)
−𝛾

𝜉𝜙𝑧
−𝜇𝑏
𝜉𝜙 ∫

(1−𝑡)𝜇𝑏𝑝0,0−𝜁𝑡𝑃1(1)

(1−𝑡)𝑡

𝑧

0
𝑒

𝜆(1+𝜑)

𝜉𝜙
∗(𝑧−𝑡)

(1 − 𝑡)
𝛾

𝜉𝜙𝑡
𝜇𝑏
𝜉𝜙𝑑𝑡                 (11) 

 

𝑅 = ∫ 𝑒
𝜆(1+𝜑)

𝜉𝜙
(1−𝑡)

(1 − 𝑡)
𝛾

𝜉𝜙 ∗ 𝑡
𝜇𝑏
𝜉𝜙

−1
𝑑𝑡

1

0

 

𝐽 =  ∫ 𝑒
𝜆(1+𝜑)

𝜉𝜙
(1−𝑡)

(1 − 𝑡)
𝛾

𝜉𝜙
−1

∗ 𝑡
𝜇𝑏
𝜉𝜙𝑑𝑡.

1

0

 

Take limit z→1 in equation (11), we get  
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𝑃0(1) = [
𝜇𝑏

𝜉𝜙
𝑝0,0𝑅 −

𝜁

𝜉𝜙
𝑃1(1)𝐽] lim

𝑧→1
(1 − 𝑧)

−𝛾
𝜉𝜙 , 

 

Since 𝑃0(1) = ∑ 𝑝𝑖,0
∞
𝑖=0 < 1 𝑎𝑛𝑑 lim

𝑧→1
(1 − 𝑧)

−𝛾

𝜉𝜙 = ∞, we should have that  

 
𝜇𝑏

𝜉𝜙
𝑝0,0𝑅 −

𝜁

𝜉𝜙
𝑃1(1)𝐽 = 0.                                                                     (12) 

From equation (12), we get 

𝑃1(1) =
𝜇𝑏𝑅

𝜁𝐽
𝑝0,0.                                                                                      (13) 

Substituting eq (13) into the eq (11) we get 

𝑃0(𝑧) =
𝜇𝑏

𝜉𝜙
𝑝0,0(1 − 𝑧)

−𝛾
𝜉𝜙𝑧

−𝜇𝑏
𝜉𝜙 ∫

𝐽 − (𝑅 + 𝐽)𝑡

𝐽
𝑒

𝜆(𝜑+1)
𝜉𝜙

(𝑧−𝑡)
(1 − 𝑡)

𝛾
𝜉𝜙

−1
𝑡

𝜇𝑏
𝜉𝜙

−1
𝑑𝑡.

𝑧

0

   (14) 

Take the denominator portion of 𝑃1(𝑧), we state 𝜂(𝑧) = 𝜆(𝜑 + 1)𝑧(1 − 𝑧) + 𝜁𝑧. Since  

𝜂(0) = −𝜇𝑎 < 0, 𝜂(1) = 𝜁 > 0, 𝜂(+∞) < 0. 

 
The roots of 𝜂(𝑧)= 0 is present in (0, 1) and (1, +∞). Therefore 𝜂(𝑧)= 0 it just has one 
root amid 0 and 1. Take z1 be the root. Since 𝑃1(𝑧) ≥ 0 for the interval 0 ≤ z ≤ 1, 

Numerator term of 𝑃1(𝑧) should diminish at z=z1. From equation (8) we have 

𝑝0,1 =
𝛾𝑃0(𝑧1)

𝜆(1 + 𝜑) ∗ (1 − 𝑧)
                                                           (15) 

 
By the normalizing condition 1 = 𝑝0,1 + 𝑃0(1) + 𝑃1(1), we have  

𝑝0,0 =
𝜆(1 + 𝜑) ∗ 𝜉𝜙𝛾𝛿𝐽

𝜇𝑏[𝜆(1 + 𝜑) ∗ 𝜉𝜙(𝛿 + 𝛾)𝑈 + 𝜁𝛾2𝐽𝑥(𝑧1)]
.                  (16) 

where 

       𝑥(𝑧1) = (1 − 𝑧)
−𝛾

𝜉𝜙
−1

𝑧1

−𝜇𝑏
𝜉𝜙

∫ (1 −
𝑅+𝐽

𝐽
𝑡)

𝑧1

0
𝑒

𝜆(1+𝜑)

𝜉𝜙
(𝑧1−𝑡)

(1 − 𝑡)
𝛾

𝜉𝜙
−1

𝑡
𝜇𝑏
𝜉𝜙

−1
𝑑𝑡.   

 
The 𝑝𝑖,0(𝑖 ≥ 1) and 𝑝𝑖,1(𝑖 ≥ 1) are the probabilities, those can estimated in parts of  

𝑝0,0.  

𝑝𝑖+1,0 =
𝜆(1 + 𝜑) + 𝛾 + 𝜇𝑏 + 𝑖𝜉𝜙

𝜇𝑏 + (𝑖 + 1)𝜉𝜙
𝑝𝑖,0 −

𝜆(1 + 𝜑)

𝜇𝑏 + (𝑖 + 1)𝜉𝜙
𝑝𝑖−1,0, 𝑖 ≥ 2, 

 

𝑝1,0 =
(𝜆(1 + 𝜑) + 𝛾)𝐽 − 𝜇𝑏𝑅

(𝜇𝑏 + 𝜉𝜙)𝐽
𝑝0,0.                                                               

Where, 𝑝0,0 stated in equation (16),  

http://www.commprac.com/


RESEARCH 
www.commprac.com 

ISSN 1462 2815 
 

COMMUNITY PRACTITIONER                                   1803                                           JUNE Volume 21 Issue 06 

𝑝𝑖+1,1 =
𝜆(1 + 𝜑) + 𝜁 + 𝜇𝑎

𝜇𝑎
𝑝𝑖,1 −

𝜆(1 + 𝜑)

𝜇𝑎
𝑝𝑖,1,0 −

𝜆(1 + 𝜑)

𝜇𝑎
𝑝𝑖,0, 𝑖 ≥ 1, 

and  𝑝0,0 is stated in equation (15). 

Remark 3.2. The inequality 𝞯 > 0 is essential and sufficient state for the queue is stable 
in this study. This outcome can be gotten in Kim & Lee [10]. In actuality, every 
consumer is flushed out of the system whenever a breakdown arrives, It refers to the 
number of consumers at random epochs doesn’t go to infinity. 
 
4. ENCOURAGED SYSTEM-SIZE PROBABILITIES 

We develop the probabilities of system-size in this part. The probability the primary 

service provider is at repair and working, represent by 𝑃0, 𝑃1, respectively, is given by 

𝑃0 = 𝑃0(1) =
𝜇𝑏𝑅

𝛾𝐽
𝑝0,0, 

  𝑃1 = 𝑃1(1) + 𝑝0,1 = 1 −
𝜇𝑏𝑅

𝛾𝐽
𝑝0,0. 

Let E(Lb), E(La) indicate the expected number of system consumers after the primary 
server is repaired and functioning, respectively. put z1 and apply L’ Hospital rule in 
the right part of the eq (6), the term for E(Lb) is attained as 

𝐸(𝐿𝑏) = 𝑃0
′(1) =

(𝜆(1 + 𝜑) − 𝜇𝑏)𝑅 + 𝛾𝐽

𝛾(𝜉𝜙 + 𝛾)𝐽
𝜇𝑏𝑝0,0. 

Differentiate “z” on both parts of eq (7) and take z=1 produce E (𝐿𝑎) as 

𝐸(𝐿𝑎) =
𝜆(1 + 𝜑) − 𝜇𝑎

𝜁
𝑃1(1) +

𝛾

𝜁
𝑃0

′(1) +
𝜆(1 + 𝜑)

𝜁
𝑃0,1 

 

            =
𝜆(1 + 𝜑) − 𝜇𝑎

𝜁2

𝑅

𝐽
𝜇𝑏𝑝0,0 +

𝛾𝑥(𝑧1)

𝜉𝜙𝜁
𝜇𝑏𝑝0,0 +

𝛾

𝜁
𝐸(𝐿𝑏). 

 
Hence, the expected numbers of consumers in the service facility (system), meant by 

E(𝐿𝑠), 

E(𝐿𝑠) =  𝐸(𝐿𝑏) +  𝐸(𝐿𝑎)

= (
𝜆(1 + 𝜑) − 𝜇𝑎

𝜁2

𝑅

𝐽
+

𝛾𝑘(𝑧1)

𝜉𝜙𝛿
+

𝜁 + 𝛾

𝜁

(𝜆(1 + 𝜑) −  𝜇𝑏)𝑅 + 𝛾𝐽

𝛾(𝛾 + 𝜉𝜙)𝐽
) 𝜇𝑏 ∗ 𝑝0,0 

 
The expected reneging rate is 

𝐸(𝜉) = ∑ 𝑖𝜉𝑝𝑖,0 = 𝜉𝐸(𝐿𝑏)

∞

𝑖=1

 

 
5. SOJOURN-TIME 

Our consideration to the waiting-time or sojourn-time of a trial consumer (T-C) in this 
section, Where T-C is the total amount of time that has passed between arrival and 
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departure from the system, whether due to an abandonment, breakdown, or the end 
of service. Let 𝑊𝑖,𝑗  represent the sojourn-time of the trial consumer, upon consumer 

arrival he witnesses the state (i, j); i ≥ 0; j = 0, 1. Take d1 denotes the interval of time 
between the arrival of the T-C and the next breakdown arrival. It is evident that its 
distribution is the same as the “d”. Thus the conditional expected waiting-time of the 
T-C incoming to the service facility in the (0, 1)th state follow as 

𝐸(𝑊0,1) = 𝐸(𝑚𝑖𝑛{𝑉1, 𝑑1}) =
1

𝜇𝑎 + 𝜁
.                                         (17) 

Undertake that the test consumer arrives at the (i,1) state of the system. Let X 
represents the period of the incomplete work instantly later the T-C arrival epoch. Then 
residual regular service-period plus the total of “i” usual service times is thus equal to 
X. Because of the memoryless-property, take notice that the residual regular service-
period is stochastically equivalent to a new usual service. So, now we have 

𝐸(𝑊𝑖,1) = 𝐸(𝑚𝑖𝑛{𝑥, 𝑑1}) =
(𝜇𝑎 + 𝜁)𝑖+1 − 𝜇𝑎

𝑖+1

𝛿(𝜇1 + 𝜁)𝑖+1
                                        (18) 

Let's say the T-C is in state (i, 0) when it joins the system. Conditioning for the following 
event, we notice, 

𝐸(𝑊𝑖,0) =
1

𝜆(1 + 𝜑) + 𝜇𝑏 + 𝛾 + (𝑖 + 1)𝜉𝜙
+

𝜆(𝜑 + 1)

𝜆(1 + 𝜑) + 𝜇𝑏 + 𝛾 + (𝑖 + 1)𝜉𝜙
𝐸(𝑊𝑖,0) 

+
𝜇𝑏

𝜆(1 + 𝜑) + 𝜇𝑏 + 𝛾 + (1 + 𝑖)𝜉𝜙
𝐸(𝑊𝑖−1,0) +

𝛾

𝜆(1 + 𝜑) + 𝜇𝑏 + 𝛾 + (1 + 𝑖)𝜉𝜙
𝐸(𝑊𝑖,1) 

+
(1 + 𝑖)𝜉𝜙

𝜆(1 + 𝜑) + 𝜇𝑏 + 𝛾 + (1 + 𝑖)𝜂
(

1

𝑖
× 0 +

𝑖

1 + 𝑖
𝐸(𝑊𝑖−1,0)),                    

This term can be additional rewritten as  

𝐸(𝑊𝑖,0) =
1 + (𝜈𝜇𝑏 + 𝑖𝜉𝜙)𝐸(𝑊𝑖−1,0) + 𝛾𝐸(𝑊𝑖,1)

𝜈𝜇𝑏 + 𝛾 + (𝑖 + 1)𝜉𝜙
                                                   (19) 

We also have 

𝐸(𝑊0,0) =
1

𝜆(1 + 𝜑) + 𝛾 + 𝜉𝜙
+

𝜆(𝜑 + 1)

𝜆(1 + 𝜑) + 𝛾 + 𝜉𝜙
𝐸(𝑊0,0)

+
𝛾

𝜆(1 + 𝜑) + 𝛾 + 𝜉𝜙
𝐸(𝑊0,1), 

Implying that 

𝐸(𝑊0,0) =
𝜇𝑎 + 𝜁 + 𝛾

(𝜇𝑎 + 𝜁)(𝛾 + 𝜉𝜙)
                                              (20) 

By iterating equation (19) and utilizing equation (18) and (20), we get, for 𝑖 ≥ 1 

𝐸(𝑊𝑖,0) = 𝐼𝑖+1 + ∑ ∏
𝜇𝑏 + 𝑖𝜂

𝜇𝑏 + 𝛾 + (𝑖 + 1)𝜉𝜙
𝐼𝑙 + ∏

𝜇𝑏 + 𝑖𝜉𝜙

𝜇𝑏 + 𝛾 + (𝑖 + 1)𝜉𝜙

𝑖

𝑖=1

𝑖

𝑖=𝑙

𝑖

𝑙=2

𝐸(𝑊0,0) 
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+
1

𝜆(1 + 𝜑) + 𝜇𝑏 + 𝛾 + (𝑖 + 1)𝜂
(1 + ∑ ∏

𝜇𝑏 + 𝑖𝜉𝜙

𝜇𝑏 + 𝛾 + 𝑖𝜉𝜙

𝑖

𝑖=𝑙

𝑖

𝑙=2

), 

Where 

𝐼𝑙 =
𝛾[(𝜁 + 𝜇𝑎)𝑙 − 𝜇𝑎

𝑙 ]

𝜁(𝜁 + 𝜇𝑎)𝑙+1[𝜈𝜇𝑏 + 𝛾 + (𝑙 + 1)𝜉𝜙]
 

And the conventions that ∑ 𝑎𝑙 = 0 𝑓𝑜𝑟 𝑖 = 1 ,𝑖
𝑙=2  Lastly, we attain the expected sojourn-

time of the T-C as  

𝐸(𝑊𝑠) = ∑ 𝑝𝑖,0𝐸(𝑊𝑖,0) + ∑ 𝑝𝑖,1𝐸(𝑊𝑖,1).

∞

𝑖=0

∞

𝑖=0

 

However, 𝑉𝑠𝑒𝑟𝑣𝑒𝑑 is the most essential metric of system performance, determining the 
overall sojourn time of a consumer who has finished their service. Let 𝑉𝑖,𝑗 the holding 

duration of a T-C who doesn’t depart the service facility before finishing his task, 
assumed that upon consumer arrival is state (i, j). Then, i = 0, j=1. 

𝐸(𝑉0,1) = 𝑃(𝑉1 < 𝑑1)𝐸(𝑉1|𝑠1 < 𝑉1) =
𝜇𝑎

(𝜇𝑎 + 𝜁)2
. 

and for 𝑖 ≥ 1, 

𝐸(𝑉𝑖,1) =
𝜇𝑎

𝜇𝑎 + 𝛿
(

1

𝜇𝑎 + 𝜁
+ 𝐸(𝑉𝑖−1,1)).                                (21) 

Iterating equation (21) we get 

𝐸(𝑉𝑖,1) =
𝜇𝑎[(𝜇𝑎 + 𝛿)𝑖+1 − 𝜇𝑎

𝑖+1]

𝜁(𝜇𝑎 + 𝜁)𝑖+2
.                                            (22) 

Now, to analyze 𝐸(𝑉0,𝑖) for i=0,1,2, … 

𝐸(𝑉0,0) =
𝜇𝑏

(𝜇𝑏 + 𝛾 + 𝜉𝜙)2
+

𝛾

𝜇𝑏 + 𝛾 + 𝜉𝜙
(

1

𝜇𝑏 + 𝛾 + 𝜉𝜙
+ 𝐸(𝑉0,1)),                          (23) 

       For 𝑖 ≥ 1, 

        𝐸(𝑉𝑖,0) =
𝜈𝜇𝑏

𝜇𝑏 + 𝛾 + (𝑖 + 1)𝜉𝜙
(

1

𝜇𝑏 + 𝛾 + (𝑖 + 1)𝜉𝜙
+ 𝐸(𝑉𝑖−1,0)) 

         +
𝛾

𝜇𝑏 + 𝛾 + (𝑖 + 1)𝜉𝜙
(

1

𝜇𝑏 + 𝛾 + (𝑖 + 1)𝜉𝜙
+ 𝐸(𝑉𝑖,0)) 

 +
(1 + 𝑖)𝜉𝜙

𝜇𝑏 + 𝛾 + (𝑖 + 1)𝜉𝜙

𝑖

𝑖 + 1
(

1

𝜇𝑏 + 𝛾 + (𝑖 + 1)𝜉𝜙
+ 𝐸(𝑉𝑖−1,0)).                                   (24) 

By iterating (24) and utilizing (22) produces 

𝐸(𝑉𝑖,0) = 𝛼𝑖 + ∑ 𝛼𝑙−1

𝑖

𝑙=2

∏
𝜇𝑏 + 𝑖𝜉𝜙

𝜇𝑏 + 𝛾 + (𝑖 + 1)𝜉𝜙
+ ∏

𝜇𝑏 + 𝑖𝜉𝜙

𝜇𝑏 + 𝛾 + (𝑖 + 1)𝜉𝜙
𝐸(𝑉0,0)

𝑖

𝑖=1

𝑖

𝑖=𝑙
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Where 

𝛼𝑙 =
𝜇𝑏 + 𝑙 ∗ 𝜉𝜙

(𝜇𝑏 + 𝛾 + (𝑙 + 1)𝜉𝜙)2
+ 𝜇𝑎𝐼𝑙 

Lastly, the expected sojourn-time of the T-C that is assisted might be estimated 
utilizing the term 

𝐸(𝑊𝑠) = ∑ 𝑝𝑖,0𝐸(𝑉𝑖,0) +

∞

𝑖=0

∑ 𝑝𝑖,1𝐸(𝑉𝑖,1).

∞

𝑖=0

 

 
6. NUMERICAL ILLUSTRATIONS 

In this section, we provide numerical examples 

Table 1: Represents the effect of 𝝀 vs P00 with 𝜑=10% or 0.1, 𝜇a=2.0,  𝜻=1.5,  
𝜸=1.6,  𝝃=1, 𝝁𝒃 = 𝟎. 𝟓, 𝟏. 𝟎 𝒂𝒏𝒅 𝟏. 𝟓, 𝝓 = 𝟏𝟎% 𝒐𝒓 𝟎. 𝟏. 

λ 𝝁𝒃 𝝁𝒃 𝝁𝒃 

1.6 0.1722 0.1818 0.1869 

1.7 0.1739 0.1843 0.19 

1.8 0.1755 0.1867 0.1929 

1.9 0.1771 0.1891 0.1957 

2 0.1787 0.1913 0.1984 

2.1 0.1804 0.1935 0.201 

2.2 0.182 0.1956 0.2034 

2.3 0.1836 0.1977 0.2057 

2.4 0.1852 0.1997 0.208 

2.5 0.1868 0.2016 0.2101 

2.6 0.1884 0.2035 0.2122 

2.7 0.1889 0.2053 0.2142 

2.8 0.1915 0.2071 0.2161 

2.9 0.193 0.2088 0.2179 

3 0.1945 0.2105 0.2197 

 

 

Figure 2: Represents the effect in 𝝀 vs P00 with 𝜑=10% 
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Table 2: Represents the effect of 𝝀 vs E(Ls) with 𝜑=10% or 0.2, 𝜇a=2.0,  𝜻=1.5,  
𝜸=1.6,  𝝃=1, 𝝁𝒃 = 𝟎. 𝟓, 𝟏. 𝟎 𝒂𝒏𝒅 𝟏. 𝟓, 𝝓 = 𝟎. 𝟏. 

λ 𝜇b 𝜇b 𝜇b 

1.6 0.7607 0.7038 0.6521 

1.7 0.8319 0.7733 0.72 

1.8 0.9032 0.8432 0.7886 

1.9 0.9747 0.9135 0.8578 

2 1.0463 0.9842 0.9274 

2.1 1.1183 1.0552 0.9976 

2.2 1.1899 1.1266 1.0682 

2.3 1.262 1.1982 1.1392 

2.4 1.3342 1.2701 1.2106 

2.5 1.4066 1.3423 1.2823 

2.6 1.4792 1.4147 1.3544 

2.7 1.5519 1.4874 1.4268 

2.8 1.6248 1.5603 1.4995 

2.9 1.6979 1.6335 1.5725 

3 1.7711 1.7069 1.6457 

 

Figure 3: Represents the effect in 𝝀 vs E(Ls) with 𝜑=10% 

Table 3: Provides the variation in 𝝀 vs E(Ws) with 𝜑=10% or 0.2, 𝜇a=1.8,  𝜻=1.5,  

𝜸=1.6,  𝝃=1, 𝝁𝒃 = 𝟎. 𝟓, 𝟏. 𝟎 𝒂𝒏𝒅 𝟏. 𝟓, 𝝓 = 𝟎. 𝟏. 

λ 𝝁𝒃=0.5 𝝁𝒃=1 𝝁𝒃=1.5 

1.6 0.4322 0.3999 0.3705 

1.7 0.4449 0.4135 0.385 

1.8 0.4562 0.4259 0.3983 

1.9 0.4663 0.4371 0.4104 

2 0.4756 0.4474 0.4216 

2.1 0.484 0.4568 0.4319 

2.2 0.4917 0.4655 0.4414 

2.3 0.4988 0.4736 0.4503 

2.4 0.5054 0.4811 0.4585 

2.5 0.5115 0.4881 0.4663 

2.6 0.5172 0.4947 0.4736 

2.7 0.5225 0.5008 0.4804 

2.8 0.5275 0.5066 0.4868 

2.9 0.5322 0.5121 0.4929 

3 0.5367 0.5172 0.4987 
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Figure 4: Represents the effect of sojourn time in 𝝀 vs E(Ws) with 𝜑=10% 

Table 4: Represents the effect of 𝝀 vs P00 with 𝜑=20% or 0.2, 𝜇a=2.0,  𝜻=1.5,  
𝜸=1.6,  𝝃=1, 𝝁𝒃 = 𝟎. 𝟓, 𝟏. 𝟎 𝒂𝒏𝒅 𝟏. 𝟓, 𝝓 = 𝟎. 𝟏. 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 5: Represents the effect in 𝝀 vs P00 
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𝜆

𝜇b=0.5 𝜇b=1 𝜇b=1.5

𝛌 𝝁𝒃 =0.5 𝝁𝒃=1 𝝁𝒃=1.5 

1.6 0.1746 0.1854 0.1913 

1.7 0.1764 0.188 0.1945 

1.8 0.1781 0.1905 0.1975 

1.9 0.1799 0.1929 0.2003 

2.0 0.1817 0.1952 0.203 

2.1 0.1835 0.1975 0.2055 

2.2 0.1852 0.1997 0.208 

2.3 0.1869 0.2018 0.2103 

2.4 0.1886 0.2038 0.2125 

2.5 0.1903 0.2058 0.2147 

2.6 0.1920 0.2077 0.2168 

2.7 0.1937 0.2095 0.2188 

2.8 0.1953 0.2114 0.2207 

2.9 0.1969 0.2131 0.2225 

3.0 0.1985 0.2148 0.2243 
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Table 5: Provides the effect in 𝝀 vs E(Ls) with 𝜑=20% or 0.2, 𝜇a=2.0,  𝜻=1.5,  
𝜸=1.6,  𝝃=1, 𝝁𝒃 = 𝟎. 𝟓, 𝟏. 𝟎 𝒂𝒏𝒅 𝟏. 𝟓, 𝝓 = 𝟎. 𝟏. 

𝛌 𝝁𝒃 =0.5 𝝁𝒃=1 𝝁𝒃=1.5 

1.6 0.8643 0.805 0.7511 

1.7 0.9422 0.8815 0.8263 

1.8 1.0202 0.9585 0.902 

1.9 1.0984 1.0358 0.9784 

2 1.1768 1.1136 1.0553 

2.1 1.2554 1.1917 1.1327 

2.2 1.3342 1.2701 1.2106 

2.3 1.4132 1.3489 1.2889 

2.4 1.4924 1.4279 1.3675 

2.5 1.5718 1.5073 1.4466 

2.6 1.6514 1.5869 1.526 

2.7 1.7311 1.6668 1.6057 

2.8 1.8111 1.747 1.6858 

2.9 1.8912 1.8274 1.7661 

3 1.9715 1.908 1.8467 

  

 

Figure 6: The effect of E(Ls) when 𝝀 vs E(Ls) with 𝜑=20% 

Table 6: Provides the variation in 𝝀 vs E(Ws) with 𝜑=20% or 0.2, 𝜇b=1.8,  𝜻=1.5,  
𝜸=1.6,  𝝃=1, 𝝁𝒂 = 𝟎. 𝟓, 𝟏. 𝟎 𝒂𝒏𝒅 𝟏. 𝟓, 𝝓 = 𝟎. 𝟏. 
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𝜇b=0.5 𝜇b=1 𝜇b=1.5

λ 𝜇b=0.5 𝜇b=1 𝜇b=1.5 

1.6 0.4501 0.4193 0.3912 

1.7 0.4618 0.4321 0.405 

1.8 0.4723 0.4437 0.4176 

1.9 0.4818 0.4543 0.4291 

2 0.4904 0.464 0.4397 

2.1 0.4982 0.4729 0.4495 

2.2 0.5054 0.4811 0.4585 

2.3 0.512 0.4887 0.467 

2.4 0.5182 0.4958 0.4748 

2.5 0.5239 0.5024 0.4822 

2.6 0.5293 0.5086 0.4891 

2.7 0.5343 0.5144 0.4956 

2.8 0.539 0.5199 0.5017 

2.9 0.5435 0.5251 0.5075 

3 0.5476 0.53 0.513 
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Figure 7: Represents the effect of sojourn time in 𝝀 vs E(Ws) 

Table 7: Provides the variation in 𝜻 vs E(Ls) with 𝜑=20% or 0.2, 𝜇b=2.0, 𝝀 = 𝟐, 

𝜻=0.4 to 2.2,  𝜸=1.6,  𝝃=1.6, 𝝁𝒂 = 𝟏. 𝟓, 𝝓 = 𝟎. 𝟏. 

 

 

                                 

                                 

 

 

 

 

 

 

 

 

 

 

Figure 8: represents 𝜁 vs E(Ls) 
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E(Ls) vs 𝜁

ξ=1.5 ξ=1 ξ=0.5

𝜻 ξ=1.5 ξ=1 ξ=0.5 

0.4 1.2238 2.2979 2.8859 

0.5 1.0159 2.0177 2.5692 

0.6 0.8898 1.7626 2.3211 

0.7 0.8077 1.579 2.1221 

0.8 0.7516 1.4402 1.9592 

0.9 0.7116 1.3314 1.8234 

01 0.6822 1.2438 1.7085 

1.1 0.6602 1.1718 1.61 

1.2 0.6433 1.1115 1.5246 

1.3 0.6301 1.0603 1.45 

1.4 0.6196 1.0162 1.3842 

1.5 0.6113 0.9779 1.3257 

1.6 0.6045 0.9444 1.2735 

1.7 0.599 0.9148 1.2265 

1.8 0.5945 0.8884 1.184 
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Table 8: Provides the variation in 𝛄 vs E(Ls) with 𝝀 = 𝟐, 𝜑=20% or 0.2, 𝜇a=1.8, 2, 
2.5, 𝜻=1.6,  𝜸=0.5 to 2,  𝝃=1.6, 𝝁𝒃 = 𝟏. 𝟓, 𝝓 = 𝟎. 𝟏. 

 

                            

 

 

 

 

 

 

 

 

 

Figure 9: Represents the effect in 𝛾 vs E(Ls) 

Table 9: Represents the effect in 𝛍𝐛/𝛍𝐚 vs E(Ls) with 𝝀 = 𝟐, 𝜑=20% or 0.2, 

𝜻=1.6,  𝜸=0.5,1,1.5,  𝝃=1.6. 
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1.1 0.2479 0.2457 0.2401 
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Figure 10: Represents 𝜇b/𝜇a vs E(Ls) 

Table 10: Represents the effect in 𝝓 vs E(Ws) with 𝝀 = 𝟐, 𝜑=20% or 0.2, 𝜻=1.5,  

𝜸=1.6,  𝝃=0.5, 𝝁𝟎 = 𝟏. 𝟓, 𝜙=0 to 0.9, 𝝁𝒃 = 𝟐. 𝟓. 
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Figure 11: Represents the effect of 𝝓𝟏 vs E(Ws) 
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7. RESULT AND DISCUSSIONS 

In this part, we discuss the outcomes of numerical examples. Table 1 and figure 2 

represents the increasing in P00 values when the arrival rate λ=1.6 to 3.0 with the 
discount rate φ = 10% or 0.1 and the different service rates of alternative server (μb =
0.5, 1.0, 1.5).  

When Table 2 and figure 3 demonstrates that the outcomes of E(Ls) are highly 

increasing when we increase φ this made the E(Ls) is higher than the Poisson arrival 
model figure 3 in [20]. Table 3 and figure 4 demonstrates that the outcomes of E(Ws) 

are slightly increasing when we increase the arrival rate λ=1.6 to 3.0 with the maximum 
discount rate φ = 10% or 0.1 and the different service rates of alternate server (μb =
0.5, 1.0, 1.5).  

Table 4 and figure 5 represents the increasing in P00 values when the arrival rate λ=1.6 

to 3.0 with the discount rate φ = 20% or 0.2 and the different service rates of alternate 
server (μb = 0.5, 1.0, 1.5). when Table 5 and figure 6 demonstrates that the outcomes 

of E(Ls) are highly increasing when we increase φ this made the E(Ls) is higher than 
the Poisson arrival model figure 3 in [20].  

Table 6 and figure 7 demonstrates that the outcomes of E(Ws) are slightly increasing 

when we increase the arrival rate λ=1.6 to 3.0 with the maximum discount rate φ =
20% or 0.2 and the different service rates of alternate server (μb = 0.5, 1.0, 1.5). Based 

on the outcome we obtained when φ = 20%  (table 5) attained a lot of users to the 
system “(E(Ls))” than φ = 10% (table 2). The same concept with a different queuing 
mechanism were studied by [6, 7]. 

Table 7 and figure 8 represents that the outcomes of E(Ls) are reducing when we 
increase the breakdown rate ẟ=0.4 to 2.0 with the different reneging rates of 
consumers (ξ = 0.5,1,1.5) due to the server crash (breakdown) i.e., (Here the primary 
server is under repair because of the breakdown). The implementation of encouraged 
consumer arrival and maintaining the consumers from impatience made the E(Ls) is 
much higher than in (figure 6 (b) of ref [20]).  

Table 8 and figure 9 shows that the outcomes of E(Ls) are reducing when we increase 

the repair rate γ =1.6 to 3.0 with the different service rates of primary server (μa =
1.8, 2.0, 2.5) due to the working-breakdown service policy i.e., (Here the primary server 
is under repair because of the breakdown). Usually, consumers mostly quit the service 

facility when the server gets breakdown. At ξ = 1.5 has the lowest system size than 
0.5 and 1.0.  

From Table 9, Figure 10, we can see the ratio of µa and µb, E(L) reduce when the rate 
of γ (repair) rise. Obviously, the growing of E(L) is depended on the µa and µb. Now, 

In table 10 and figure 11 reveals that when the rate of maintenance increases “𝜙1 =
0.1 to 0.9"  then the sojourn-time E(Ws) decreasing simultaneously. Minimized the 
sojourn-time by maintaining consumers from impatient behavior.  
 
8. CONCLUSION 

In this article, we have developed the effectiveness of an M/M/1 queue with working 
breakdown policy, and maintenance of impatient consumers along with the proposed 
encouraged system-size analysis. We developed the balance equations by using the 
stochastic continuous time Markov-chain. 
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Performance metrics, such as the probabilities of the service provider's state, 
expected number of consumers in the system and expected sojourn-time of 
consumers are developed. By utilizing the encouraged arrival strategy, we maximized 
the system-size.  

Reduced the sojourn-time by maintenance of impatient consumers.  In a lot of real-life 
situations, when a business offers a discount to its consumers, the consumers are 
more encouraged to use the services of the company even if it is already overcrowded. 
The more we maintain the system during working-breakdown will reduce the chances 
of consumers to get impatient. We will extend this research by bulk-service queue or 
deterministic service queueing system in the future. 
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