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Abstract  

AMH has emerged as a pivotal biomarker for understanding the pathophysiology, diagnosis, and fertility 
implications of PCOS. This review delves into AMH's multidimensional involvement in PCOS, with an 
emphasis on pathogenic insights and diagnostic improvements. AMH levels in PCOS patients are 
significantly higher than in healthy controls, indicating the syndrome's etiology. According to studies, 
AMH is intricately linked to the hyperandrogenic and insulin-resistant milieu that characterizes PCOS, 
offering light on the underlying mechanisms that contribute to the disorder's development. Furthermore, 
AMH plays an important role in the diagnosis of PCOS. Its capacity to reflect ovarian follicular activity 
and reserve makes it useful for evaluating ovarian dysfunction and reproductive potential in PCOS 
patients. Diagnostic breakthroughs have used AMH measures to improve the accuracy of PCOS 
diagnosis, particularly in difficult instances where traditional approaches may fail. This review also looks 
at how AMH is progressing in therapy options for PCOS. It examines how AMH levels may influence 
treatment outcomes, such as ovulation induction and weight management, and provides insights into 
individualized therapy techniques.  
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INTRODUCTION 

Polycystic ovarian syndrome (PCOS) is an elaborate endocrine condition that affects 
a large proportion of women globally, with estimates indicating a frequency of up to 
10% among reproductive-age women [1]. Its distinguishing characteristics include 
hyperandrogenism, ovulatory failure, and polycystic ovarian morphology [2]. Despite 
being a prevalent disorder, the actual etiology of PCOS remains unknown, and its care 
provides therapeutic hurdles due to its variability and diverse clinical symptoms [3]. 
Over the past several years, there appears to be an increasing interest in investigating 
potential treatment strategies for PCOS that go beyond traditional symptomatic care 
[4]. Anti-Müllerian hormone (AMH), a glycoprotein in the TGF-β family, could be a 
potential target [5]. AMH, which has previously been recognized for its significance in 
male sexual differentiation during embryogenesis, has recently received attention for 
its role in ovarian folliculogenesis and probable contribution to PCOS pathogenesis 
[6].  

This introduction tries to explain the rationale for addressing AMH in PCOS therapies, 
beginning with a summary of current PCOS pathophysiology, and then moving on to 
examining AMH's involvement in ovarian function and its consequences in the setting 
of PCOS. Furthermore, it will discuss the limitations of existing treatment modalities 
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for PCOS and highlight the potential benefits of targeting AMH as a more targeted and 
effective approach to managing this complex syndrome. 

The basics of AMH expression and action 

AMH gene 

Anti-Müllerian hormone (AMH) (Fig. 1) is a glycoprotein peptide weighing 
approximately 140 kDa. It is categorized within the subfamily of growth factors called 
transforming growth factor beta (TGF-β) [7]. AMH gene lies on the short arm of 
chromosome 19, between the regions p13.2 and p13.3. It is separated into five exons, 
comprising 275 base pairs (bp) [8]. 

The AMH gene is transcribed through a 180-bp region that is contiguous to the protein 
Sap62. It has three transcription binding sites: one is a 20-bp conserved motif that 
binds the orphan nuclear receptor SF-1, and the other is 50 bp upstream from the SF-
1 binding site and stimulates the binding of SOX9, a high-mobility group protein. The 
final binding site, located downstream of the SF-1 binding site, binds to GATA-4 from 
the GATA transcription factor family. When SF-1 binds to the promoter, transcription 
upregulates. Furthermore, the interaction between SOX9, WT1, and GATA-
4 modulates this process [9]. The product of the AMH gene is a precursor known as 
proAMH, consisting of 560 amino acids [10]. Following the removal of the 24 amino 
acid fragment, a molecule is glycosylated, resulting in the formation of two identical 
subunits having a molecular weight of 70 kDa connected by sulphide bridges. The N-
terminal domain known as the "pro-region" (115 kDa AMHN) and the C-terminal 
domain, or "mature region" (25 kDa AMHC), are formed as a result of proAMH 
proteolysis [10]. The N-terminal segment is necessary for the protein to be active, 
which makes it unlikely that the other proteins in the TGF-β complex would be affected. 
The C-terminal segment is required for the biological functions of the protein and its 
binding. to receptors [11]. 

 

Fig 1: The human AMH receptor (AMHRII) gene, mRNA, and protein. The 
human AMHRII gene localized in chromosome 12, 12q13.13, is transcribed into 

2001 base (b) mRNA, which is then translated into a 573 amino acid (aa) 
protein 
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AMH Receptors  

The AMH signaling pathway is regulated by two heteromeric serine/threonine kinase 
transmembrane receptors, categorized into two types: type I and type II [12]. 

Anti-Müllerian hormone receptor I (AMHRI) is phosphorylated when free AMH binds 
to AMHRII. This phosphorylation activates cytoplasmic Smad proteins, which start 
downstream signaling. More specifically, AMH initiates Smad1 protein signal 
transduction but not Smad2 protein [12].  

The Smad proteins translocate into the nucleus after becoming phosphorylated, where 
they can either stimulate or inhibit the transcription of particular genes [9].  

The only receptor available for the AMH hormone is the AMH type II receptor. It 
expresses itself in the ovary soon after birth and lasts the entirety of an individual's life 
[13]. The ductal epithelium of the mammary gland, the prostate, the endometrial, the 
Sertoli and Leydig cells in the testes, and the theca and granulosa cells in the ovaries 
are all known to contain the AMHRII receptor [14–17]. 

Numerous cancer cell lines, including those from the ovarian, cervical, endometrial, 
and breast epithelium, have also been shown to express the receptor AMHRII [8,18].  

In recent years, it has also been demonstrated that organs other than the gonads, 
including the motoneurons [19], neurons [20], hypothalamus [21], and gonadotropic 
cells of the pituitary gland [22], also express AMH, as shown in Table 1. 

However, since serum AMH's expression profile corresponds to that of the gonads, 
this expression has little effect on circulating levels. The fact that AMHRII is more 
widely expressed emphasizes the importance of the effects of AMH shown in tissues 
that express AMHRII.  

Table 1: AMH and AMHR2 distribution in both sexes 

 Organs Men Women Both Reference 

AMH 
Expression 

Ovaries  ****  23 

Testes ****   24 

Nervous system   * 25,26 

Pituitary gland   * 27 

Hypothalamus   * 28 

AMHR2 
Expression 

Testes ****   24 

Ovaries  ****  23 

Nervous system   * 25,26 

Pituitary gland   * 27 

Hypothalamus   * 28 

Uterus  **  23 

Placenta  *  23 

Breasts  *  29 

Pancreas   * 30 

Lungs   * 31 

Adrenals   ** 30 

Prostate *   32 

The number of * represents the level of expression of AMH and AMHR2 in the different 
tissues. 
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Expression of AMH 

AMH expression begins in primary follicles in the ovaries of every species that has 
been studied thus far. It peaks in pre-antral and small antral follicles, declines in large 
antral follicles, and eventually becomes almost undetectable—except in cumulus cells 
[23]. 

AMH secretion in the gonads corresponds to its detection in serum, even though AMH 
is expressed in endometrial and endometriotic cells [33]. 

For instance, there is an undetectable level of AMH in the serum of women who have 
had their ovaries removed. Beginning in the 36th week of pregnancy, the ovarian 
granulosa cells (GC) of the pre-antral and antral follicles release AMH in females [34]. 

Serum AMH levels are two to four times higher in PCOS-affected women and in their 
daughters. The higher number of small antral follicles, which express AMH the most, 
as well as the overexpression of AMH by these GCs are the two causes of the raised 
serum AMH levels in women with PCOS [35]. 

Modified GC receptivity to numerous hormones dysregulated in PCOS might lead to 
the overexpression of AMH and AMHR2. Indeed, androgens increase in vitro AMH 
mRNA levels exclusively in GCs from PCOS patients which overexpress the androgen 
receptor [23]. 

Estradiol (E2), on the other hand, mitigates AMH expression in the GCs of normal 
women while not regulating the expression of this gene in the GCs of PCOS women 
[36]. LH and E2 reduce AMHR2 mRNA levels in GCs from normal women, however, 
they are not modulated by these hormones in GCs from anovulatory women with 
PCOS. 

Anti-Müllerian Hormone (AMH) regulates the number and selection of developing 
follicles for ovulation [37]. It functions as a negative regulator in the early stages of 
follicular development [38]. Essentially, AMH suppresses follicle recruitment and 
growth by lowering the influence of growth factors and gonadotropins, particularly 
follicle-stimulating hormone (FSH) [39]. To put it simply, AMH regulates the 
reproductive cycle by limiting the number of follicles that mature and preventing 
excessive proliferation.  

Immature Sertoli cells in the testes generate AMH during embryonic development. 
AMH secretion begins in the ninth post-conception week and lasts until 2 years 
postnatally. It decreases during puberty and becomes undetectable in adults owing to 
high testosterone levels [40,41]. Whenever a male fetus has low or no AMH levels, 
both male and female genitalia develop simultaneously. 

In the absence of AMH, the Müllerian ducts form the fallopian tube, uterus, cervix, and 
upper one-third of the vagina. Changes in AMH levels or receptors are capable of 
impacting the development of the female reproductive system. 

In women, production begins in the 36th week after conception. After a brief neonatal 
rise, AMH levels remain low until puberty. Adolescent girls experience escalating AMH 
serum levels that eventually plateau. AMH serum levels start to decline in the mid-20s 
and become undetectable many years before menopause [42,43]. 

AMH also alters follicular growth and dynamics. It serves as an antagonist of follicle 
recruitment, effectively halting the process of primordial follicles developing into 
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expanding follicles. This mechanism contributes to follicular pool balance and 
regulates the follicle maturation rate. AMH also modulates follicular sensitivity to 
follicle-stimulating hormone (FSH), an important hormone in ovarian function [44]. 

At different phases of development, AMH affects the hypothalamic-pituitary-gonadal 
(HPG) axis and is implicated in the formation of ovarian follicles [45]. 

The number of antral follicles in the initial follicular stage of the menstrual cycle strongly 
influences the number of ovarian follicles, which is reflected in the serum AMH 
concentration [45,46,47]. 

Consequently, low serum AMH levels can be attributed to a decreased antral follicle 
count. Furthermore, neither the menstrual cycle phase nor exogenous sex steroids 
affect the blood level of AMH. Consequently, any day of the cycle can be used to 
collect blood samples [48].  

The fact that AMH is a validated biomarker of female reproductive potential should be 
underlined. It represents the quantity of primary follicles and how they react to 
exogenous gonadotrophins [45,47,49]. 

Mechanism of action (MOA) of AMH (Fig. 2) 

AMH in humans is activated by cleaving its 140-kDa precursor at a certain location, 
which results in a 110-kDa N-domain and a 25-kDa C-terminal domain which carries 
the bioactive site [50]. Although the half-lives of the precursor and its noncovalent 
forms in female serum are similar, methodological differences have made it difficult to 
determine the exact half-life [51]. The cleavage most likely takes place in the producing 
cells and is mediated by enzymes PC5 [52,53,54]. While serum and follicular fluid 
include both precursor and noncovalent forms, serum contains more of the latter, 
signifying further cleavage or degradation from outside cells. But without the N-
terminal domain, the instability of the C-terminal segment makes it unlikely to circulate 
on its own. More research is necessary to fully understand the cleavage dynamics and 
functional consequences in the ovary [55].  

AMH mostly interacts with AMHR2 via its C-terminal domain, most likely as a 
noncovalent complex. This notion is corroborated by the fact that AMH's N-terminal 
segment increases the C-terminal domain's activity and that, in lab settings, the 
noncovalent complex and the pure C-terminal fragment have similar affinities for 
AMHR2 [55].  

While the noncovalent complex from follicular fluid efficiently binds to AMHR2 in vitro, 
the serum-derived complex fails to do so, implying that serum-related variables may 
impair AMH bioactivity. Laboratory investigations have demonstrated that when AMH 
and AMHR2 bind, the N-terminal domain of the noncovalent complex is cleaved, 
allowing for AMH signaling, with the C-terminal version being more potent than AMH 
noncovalent complex in stimulating the phosphorylation of SMAD 1, 5, or 8 [54,56].  

The Q496 residue in the C-terminal domain is critical for promoting interactions with 
AMH type I receptors. Mutations at this location cause chronic Müllerian duct 
syndrome in men, making the AMH physiologically inactive. Further study on AMHR2 
residues and their involvement in AMH signaling, together with experimental data 
indicating early monomer binding before dimerization, highlights the intricacy of AMH-
mediated pathways [57]. 
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Fig 2: The mechanism of action of AMH action via receptor. Proteolysis of 
proAMH leads to a conformational change in the C-terminal domain that allows 
binding AMHR2. AMHR2 induces binding to the type I receptor, which is then 

phosphorylated by a kinase receptor type II. 

AMH variability in PCOS 

PCOS is a prevalent endocrine condition that impacts around 5 to 10 percent of 
women in their reproductive years worldwide [58]. According to the Rotterdam criteria, 
the diagnosis needs to include at least two of the following: polycystic ovarian 
morphology visible on ultrasound, evidence of elevated androgens either in biological 
tests or clinical signs like acne and hirsutism (excessive hair growth), and ovulation 
irregularities [59]. 

Four phenotypes can be defined by these criteria, the most severe of which combines 
all three features. Disruptions in the GnRH/LH pulsatility are also linked to PCOS, and 
these can result in high LH (luteinizing hormone) levels and frequently a raised 
LH/FSH (follicle-stimulating hormone) ratio [60]. PCOS-afflicted women frequently 
have metabolic difficulties such as weight gain, resistance to insulin, elevated levels 
of lipids, and type 2 diabetes. 

Given that 20% to 40% of individuals exhibit familial clustering of PCOS symptoms, 
there is evidence of a genetic component [61]. Developmental variables may also be 
involved since, by the theory of the Developmental Origins of Health and Disease, 
abnormalities during the foetal and prepubertal stages might have long-term effects 
on reproduction and metabolism [62,63]. 

Levels of AMH are 2- to 4-fold greater in follicular fluid and serum of PCOS patients 
[64]. This rise is explained by the overexpression of AMH and its receptor (AMHR2) 
by granulosa cells (GCs), which may have been influenced by hormonal dysregulation, 
in addition to the number of tiny antral follicles releasing AMH [65,66].  

According to research, hyperandrogenism, a defining symptom of PCOS, causes 
granulosa cells (GCs) to express more AMH in afflicted women. Although factors such 
as FSH, estradiol, and follicle proliferation under androgen influence can complicate 
this association, research consistently reveals a positive relationship between 
androgens and AMH levels for PCOS patients [67,68]. 

5α-dihydrotestosterone (5α-DHT), a non-aromatizable androgen, specifically 
enhances AMH mRNA levels in GCs from PCOS patients with elevated androgen 
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receptors (AR) [69]. This proposes a direct androgen-induced mechanism responsible 
for AMH overexpression in PCOS. 

These findings emphasize the importance of hyperandrogenism in the dysregulation 
of AMH in PCOS, as well as the intricate interplay between androgens, follicular 
growth, and AMH production. Understanding these molecular processes is critical for 
deciphering PCOS pathogenesis and creating targeted treatments. 

Although research on the AMH-insulin resistance link in PCOS is inconsistent, studies 
such as Liu et al. show that insulin can dose-dependently boost AMH mRNA 
expression in GCs from both PCOS and normal women [36]. Furthermore, enhanced 
AMH cleavage in association with metabolic parameters shows that metabolic 
variables may worsen AMH dysregulation in PCOS, especially given these women's 
heightened vulnerability to metabolic diseases. 

The modulation of AMHR2 expression in PCOS has received little attention, although 
it is emerging as an important factor. In vitro studies indicate that the increased 
AMHR2 expression in PCOS granulosa cells (GCs) may be related to the lack of the 
inhibitory effects of estrogen (E2) and luteinizing hormone (LH) seen in normal women 
[23].  

Recent suspicions have emerged about the role of AMH overexpression in PCOS 
pathogenesis. Certain single nucleotide polymorphisms (SNPs) in the AMH and 
AMHR2 genes, such as AMH Ile49Ser and AMHR2-482A>G, have been associated 
with PCOS and demonstrate decreased bioactivity. Furthermore, heterozygous 
mutations near AMH and AMHR2, which are seen in certain PCOS-affected 
individuals with low serum AMH levels, reinforce this association [70-73].  

While these findings may explain enhanced theca cell testosterone synthesis and 
primordial follicle recruitment, such effects could also be caused by increased 
androgen and LH expression, respectively. However, a reduction in AMH/AMHR2 
system activity alone does not fully account for the range of reproductive problems 
reported in PCOS [74]. 

These findings emphasize the intricate interplay of genetic, hormonal, and regulatory 
variables that contribute to PCOS pathogenesis. To precisely determine how AMHR2 
dysregulation contributes to the variety of symptoms associated with this condition, 
further research is required. 

AMH Measurement 

AMH has been measured using a variety of commercial enzyme-linked 
immunosorbent test (ELISA) kits, each with its differences in antibody pairings, 
standard curve ranges, and limits of detection [75] (Table 2). The development of AMH 
tests is an important step forward in clinical epidemiology Nevertheless, despite these 
advancements, there are still no well-recognized, standardized assay techniques or 
materials for determining serum AMH concentrations. Furthermore, the lack of 
conversion techniques to evaluate the comparability of AMH assays makes it difficult 
to interpret results from various research studies. For any clinical application of AMH, 
these exact definitions are necessary. With a lower detection threshold, the Ansh 
Laboratories picoAMH test is particularly notable for being the most sensitive assay 
for identifying low amounts of AMH [76]. 
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Table 2: Measurements of different AMH assays 

AMH Assay 
Year 

Manufacture 
Company 

Limit 
Standard 

Curve 
Range 

Description 

IOT, 1999 Immunotech 0.05 ng/mL 
0.1-24.5 
ng/mL 

A monoclonal antibody pair 
was directed, one directed at 
the pro region and the other at 
the mature region. 

DSL, 2003 
Diagnostic 
systems 
laboratories 

0.006 
ng/mL 

0.05-15 
ng/mL 

Both monoclonal antibodies 
were directed at the mature 
region 

GEN II 
Generation, 
2010 

Beckman 
coulter 

0.16-22.5 
ng/mL 

0.08 ng/mL 
The DSL antibodies were used 
in the assay, which was 
standardized to the lOT assay 

Ultrasensitiv
e, 2012 

Ansh labs 
0.083-14.2 
ng/mL 

0.023 
ng/mL 

Monoclonal antibody pair 
directed against specific linear 
epitopes in the stable pro 
region and mature region of 
the associated form of human 
recombinant AMH 

PicoAMH, 
2013 

Ansh labs 
0.001-
0.746 
ng/mL 

0.001 
ng/mL 

The following are the limitations of AMH: 

 Women's AMH levels fall at different rates with age. It is still necessary to develop 
an international standard for age-specific AMH diagnostic thresholds for assessing 
functional ovarian reserves or estimating menopausal age [77]. 

 There are a few endogenous and exogenous factors that may affect serum AMH 
levels, making it more difficult to accurately interpret AMH results in a clinical 
environment [78]. 

 AMH levels shouldn't be used as a fertility test because the predictive value of AMH 
for a successful clinical pregnancy (in both natural and assisted reproduction) is not 
very high [79]. 

 Due to intra-assay/interassay variations, the manual enzyme-linked immunosorbent 
assay (ELISA) for AMH evaluation has limitations and requires careful sample 
preparation and preservation. On the other hand, automated AMH assay 
technologies provide increased sensitivity, improved precision, quicker turnaround 
times, and national accessibility. Because of their better performance and useful 
benefits, automated platforms ought to be used as the industry standard for 
calculating AMH [77]. 

Role of AMH as a marker of ovarian reserve 

The quantity and quality of eggs, or oocytes, in the ovaries are referred to as ovarian 
reserve. An ovary that has lost ovarian reserve as a result of age-related factors is 
considered senile. One important indicator for determining ovarian reserve is the 
quantity of primordial follicles, or early-stage eggs [80]. It can be difficult to quantify 
this count precisely, though Research indicates that there may be a relationship 
between the number of follicles that enter the pool of growing follicles and the length 
of the primordial follicular pool [81-83]. The only source of AMH is these developing 
follicles. Consequently, the amount of AMH in the blood can serve as a proxy for the 
primordial follicle pool's size, which in turn represents ovarian reserve. Numerous 
research investigations have noted this association [84-87]. An initial quantity of 
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oocytes, typically ranging from one to two million, is present in females at birth [88]. 
AMH inhibits Leydig cell differentiation and promotes follicular maturation, but it is not 
crucial to ovarian differentiation [89]. By attracting primordial follicles during 
folliculogenesis (Fig. 3), it plays a crucial role in controlling follicular maturation. The 
amount of ovarian reserve and a woman's potential for ovulation are directly correlated 
with the levels of AMH found in serum [90].  

An additional differentiation can be pointed out between a functional ovarian reserve 
(FOR) and an ovarian reserve. There is no correlation between the blood 
concentration of AMH and the number of primordial follicles in young women since 
AMH is expressed by a certain population of developing follicles [91]. The pool of 
follicles, with a diameter of 2 to 5 mm, among which one follicle is chosen by FSH and 
will ovulate, is known as the FOR [90]. FOR release AMH during the follicular phase. 
The quantity of developing follicles drawn from the primordial pool is indicated by the 
blood's level of AMH. Since there isn't a direct blood marker for ovarian reserve, this 
functions as an indirect indicator. Serum AMH levels essentially indicate the activity of 
developing follicles and offer important insights into ovarian reserve [90]. Serum levels 
of AMH gradually rise to a peak and plateau at age 25; the serum level begins to 
decline then. Individuals with elevated AMH levels who do not have PCOS are typically 
quite fertile [92]. It is crucial to remember that serum levels of AMH are influenced by 
various factors, including vitamin D and hormonal contraception. Women using 
hormonal contraception had reduced AMH serum levels, which range from 14 to 55% 
[91]. levels of AMH are affected during pregnancy. The second and third trimesters 
are marked by a significant fall in AMH levels, which suggests that ovarian activity is 
lower during this time. On the other hand, compared to preconception levels, the AMH 
concentration is rather steady during the first trimester and recovers to normal 
following delivery [93]. Recent research suggests a link between higher serum levels 
of vitamin D and higher amounts of AMH in the bloodstream. Vitamin D and AMH 
levels might change periodically throughout the year [92]. This link is due to the 
occurrence of a vitamin D-responsive element inside the AMH gene promoter, which 
allows vitamin D levels to impact AMH concentrations [94]. 

 

Fig 3: Anti-müllerian hormone (AMH) expression and concentration about 
folliculogenesis and ovarian reserve 
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AMH and cancer gynecological tumors and cancer  

One common type of gynecological cancer is ovarian cancer, which comes in three 
primary categories: germ cell tumors, stromal tumors, and epithelial tumors. Of these, 
82% of all ovarian malignancies are epithelial ovarian tumors, which are the most 
common type. In contrast, germ cell tumors account for 3% of ovarian cancers and 
are further divided into juvenile and adult types [95]. It is interesting to note that AMH 
can affect the development of breast, endometrial, and prostate cancers in addition to 
its main association with germ cell malignancies [15,32,96]. Considering its stability 
throughout the menstrual cycle, AMH is a reliable tumor marker for both primary and 
recurrent GCT incidence, in addition to inhibin B [97]. 

Although serum AMH levels are higher in these individuals than in those without 
tumours, it can only be used effectively in patients under the age of 65 [98]. Regardless 
of their illness, elderly women's serum AMH levels are too low to assess. The higher 
level of AMH in tumors is attributed to bigger granulosa cells that release more AMH 
into the circulation [97]. The same positive connection between high circulating AMH 
levels and an increased risk of breast cancer has been discovered in breast cancer 
patients [99]. 

While most ovarian cancers emerging from the Müllerian tract are thought to grow via 
the fimbriated end of the fallopian tube, there are distinct tumor types that arise from 
the secondary Müllerian system [100]. The involvement of AMH in the regression of 
Müllerian ducts during male gender development in embryos has prompted scientists 
to investigate its potential as a therapy for epithelial ovarian cancer [101]. 
Recombinant AMH has been shown in studies to successfully limit the growth of 
several ovarian cancer cell lines, including OVCAR 8 and IGROV 1. These findings 
point to a possible option for using AMH in targeted therapy for epithelial ovarian 
cancer [102]. The levels of AMH differ between healthy individuals and cancer 
patients, which has consequences for ovarian reserve. For example, young breast 
cancer patients (28–44 years old) had AMH levels comparable to healthy women of a 
comparable age (30–44 years old), implying that breast cancer has no substantial 
impact on ovarian reserve [103].  

However, those suffering from Hodgkin lymphoma had lower AMH levels and a 
reduced ovarian reserve when compared to healthy women [104]. Notably, serum 
AMH levels can indicate post-cancer treatment ovarian function and prospective 
recovery; greater AMH levels correspond to faster restoration of ovarian function and 
fertility. As a result, testing AMH in patients' serum is regarded as a more robust and 
reliable approach to determining ovarian reserve than measuring FSH or inhibin B 
levels [105].  

Artificial Reproductive Technology 

Exogenous FSH treatment affects the hormonal modulation of ovarian function in 
women with reproductive challenges. Predicting an ovarian response before 
stimulation allows for personalized counseling and optimal gonadotrophin dosage for 
each patient [106]. Assisted reproductive technology (ART) results are strongly reliant 
on the ovarian response to stimulation, which reflects ovarian reserve in terms of egg 
number and quality. Because of its higher sensitivity than procedures such as day-
three FSH, AMH measurement has become routine practice in ART centres [107]. A 
low response to controlled ovarian hyperstimulation (COH) is commonly characterized 
as extracting five or fewer oocytes or canceling the cycle, although the optimal range 
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for oocyte retrieval is between 10 and 12 [108]. To optimize stimulation, national 
recommendations advocate adjusting gonadotropin doses depending on individual 
ovarian reserve markers, such as specific AMH levels [12]. 

Endometriosis is prevalent amongst infertile women, with studies indicating that 20-
50% of those facing infertility have endometriosis [109]. Endometriosis and infertility 
are associated via complicated pathways, with reduced ovarian reserve being 
indicated as a contributing factor. Chronic inflammation, increased oxidative stress, 
dysregulated cell cycles, and endometriosis-related poor angiogenesis all contribute 
to this impairment [110]. Kitajima et al. found reduced AMH levels in peritoneal fluid 
among women with endometriosis compared to a control group without the disorder. 
This study emphasizes the impact of endometriosis on ovarian function and the 
potential role of AMH as a diagnostic marker in measuring ovarian reserve in women 
with endometriosis-related infertility [111]. Endometriosis is usually treated with an 
amalgam of surgery and medications, such as pain relievers and hormone therapy 
[112]. However, these treatments frequently fail to cure the disease and are linked with 
high rates of clinical recurrence. While surgical intervention is successful at lowering 
symptoms, it can also reduce ovarian reserve and AMH levels. 

Laparoscopic surgery has been regarded as the primary treatment for endometriosis-
related infertility, with assisted reproductive technology (ART) as a backup option 
[109]. A combination of laparoscopic surgery and ART has resulted in higher 
pregnancy rates in endometriosis-related infertility cases. However, such procedures 
have the potential to produce iatrogenic damage, including ovarian reserve loss and 
scar formation [109], particularly following ovarian surgery, which specifically lowers 
AMH levels and antral follicle count (AFC), contributing to diminished fertility [113]. To 
address the reduction in fertility associated with endometriosis treatment, women with 
endometriosis can get oocyte cryopreservation as a preoperative fertility preservation 
therapy. This method seeks to reduce the effect of surgical operations on ovarian 
function and fertility [109].  

Menopause 

AMH has emerged as a useful marker for predicting menopause age, providing 
important information about women's reproductive health and possible fertility loss 
[114]. As women age, their ovarian reserve steadily declines, resulting in 
menopause—a natural physiological shift that signals the end of reproductive potential 
[115].  Given that genetic variables have been demonstrated to influence menopause, 
a woman's mother's age at the onset of menopause may be a good indicator of her 
own. It is known that genetic variations account for up to 50% of the variation in 
menopausal age [116]. Ovarian follicles produce AMH, which indicates the number of 
remaining primordial follicles in the ovaries and so serves as an indirect indicator of 
ovarian reserve [117]. Lower levels of AMH are often associated with decreasing 
ovarian function and imminent menopause. Dolleman et al. found from population-
based cohort studies that the AMH predicts menopause onset age more accurately 
than the mother's age hereditary factor [118]. The accuracy of the AMH in predicting 
the onset of menopause over estradiol, FSH, or inhibin B has also been demonstrated 
by another research. From the moment of a female's birth, the AMH progressively 
rises and peaks at approximately 25 years of age. After that, AMH levels in post-
menopausal women start to progressively decline until they are almost undetectable 
[119]. On the other hand, some argue that AMH may not be a reliable indicator of total 
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ovarian age. This opinion is supported by De Kat et al., who note that although AMH 
and other ovarian reserve indicators are connected to menopause age, they might not 
accurately depict the precise course of an individual's ovarian aging cycle [120]. 

While AMH was a strong predictor of time till menopause (TTM) and time until early 
menopause, it was discovered in a prospective cohort research by Depmann et al. 
that AMH had low predictive power for the age at which menopause begins. This 
suggests that although AMH can be a helpful predictive model for younger women 
who want to know if they might go through menopause early, its accuracy in identifying 
the precise age at which menopause begins may have some mistakes [121]. Another 
important factor to note is that as women age, AMH's predictive capacity declines. 
This suggests that, while AMH may be more trustworthy in predicting menopause 
timing in younger women, its accuracy declines as women approach menopause. 
These findings underscore the complexities of utilizing AMH alone to predict 
menopausal age, implying that other factors, such as genetic predispositions and 
lifestyle effects, also play important roles in determining the time of menopause onset. 
Thus, while AMH is still a useful tool for monitoring ovarian reserve and possible fertility 
reduction, its capacity to predict the exact age of menopause onset should be 
regarded with caution, particularly in older women or those with unique health profiles.  
 
CONCLUSION  

Serum anti-Müllerian hormone (AMH) levels are significantly higher among individuals 
with polycystic ovary syndrome (PCOS) than in their healthy counterparts, 
underscoring the significance of AMH as a PCOS diagnostic tool. It is especially 
beneficial in situations where evaluating the ovaries is difficult, including in obese, 
nulliparous, and individuals with limited echogenicity during ultrasound examinations, 
where reliable determination of the antral follicle count (AFC) is challenging.  

Although AMH helps identify PCOS and provides insight into its pathophysiology and 
phenotypic variations, determining an exact AMH concentration threshold is a difficult 
task. Nevertheless, AMH has the potential to develop into a reliable diagnostic tool for 
PCOS with improved assay standardization. AMH is linked to the suppression of 
follicular growth and ovulation in the context of PCOS pathophysiology, which may 
add to treatment complications. Further in-depth investigations are imperative to 
elucidate AMH's intricate role in PCOS etiology, paving the way for targeted 
therapeutic interventions. 
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