
RESEARCH 
www.commprac.com 

ISSN 1462 2815 
 

 
COMMUNITY PRACTITIONER                                   2362                                           JULY Volume 21 Issue 07 

PERFORMANCE ASSESSMENT OF THROTTLED ADAPTED LOAD 
BALANCING ALGORITHM WITH EFFICIENT CRITICALITY 

ORIENTED BROKER POLICY IN IaaS CLOUD 
 

S. Shanmuga Priya 1* and N. Priya 2 

1 Assistant Professor, PG Department of IT and BCA, Dwaraka Doss Goverdhan  

Doss Vaishnav College, Arumbakkam, University of Madras, India.  

*Corresponding Author Email: priyadgvc17@gmail.com  
2 PG Department of Computer Science, Shrimathi Devkunvar Nanalal Bhatt Vaishnav  

College for Women, Chrompet, University of Madras, India.  

Email: drnpriya2015@gmail.com 

 
DOI: 10.5281/zenodo.13166230 

 
Abstract 

Cloud Computing is a multitenant technology that offers infrastructure as a Service (IaaS), in which 
routing the user's workload to the appropriate machine is one of the key factors of a cloud environment. 
One of the important activities in an IaaS cloud environment to be taken into account is the distribution 
of a user's workload across many heterogeneous resources, such as Data Centers (DC) and Virtual 
Machines (VM). Service Brokering Policies (SBP) and Load Balancing (LB) are the significant strategies 
used for workload distribution on the IaaS platform to improve the overall efficiency of the cloud system. 
In this study, the Efficient Criticality-Oriented Service Broker Policy (ECO-SBP) and the Throttled 
Adapted Load Balancing (TALB) algorithms are combined to carry out service brokering and load 
balancing among DCs and VMs, respectively, for the purpose of minimizing the Response Time (RT) 
and Data Center Processing Time (DCPT), reducing cost, minimizing Searching Time (ST) and 
overcoming the issue of load unbalancing. These strategies are implemented in the CloudAnalyst 
simulation tool and examined against some of the significant existing service brokering policies with 
load balancing strategies available in the CloudAnalyst tool. 

Keywords: Cloud Computing, Infrastructure as a Service, Load Balancing, Service Brokering Policy, 
Datacenter, Virtual Machines, Throttled Adapted Load Balancing, Efficient Criticality-Oriented Service 
Broker Policy.  

 
1. INTRODUCTION 

Cloud computing is a universal system that distributes computing resources, including 
servers, memory, storage, access to networks, database servers, execution platforms, 
and readily available software, to service consumers according to the service level 
agreements and charges them according to usage. Rendering to the resources it 
provides to the client, cloud computing services can be divided into three distinct 
service models: IaaS (Infrastructure as a Service), PaaS (Platform as a Service), and 
SaaS (Software as a Service) [1] [2]. 

The IaaS cloud implements resource scheduling, which divides user workloads among 
several resources to process their requirements. Resource scheduling is currently a 
major concern in IaaS cloud computing that requires a robust resource scheduling 
strategy due to the fast-growing demand and substantial increases in computing 
resources in cloud computing that impact the overall performance of the IaaS cloud 
[3].  

IaaS primarily offers two important resources, namely VMs and DC. The DCs are 
physical locations spread across the world that houses several heterogeneous virtual 
machines (VMs) that are assigned to users for processing their workloads. IaaS 
includes two ubiquitous techniques for resource scheduling among various DCs and 

http://www.commprac.com/


RESEARCH 
www.commprac.com 

ISSN 1462 2815 
 

COMMUNITY PRACTITIONER                                   2363                                            JULY Volume 21 Issue 07 

VMs, such as Service Brokering Policies and Load Balancing techniques, respectively 
[4]. 

Resource scheduling can be static or dynamic in nature. Static allocation allows 
workloads to be scheduled ahead of time, whereas dynamic allocation allows 
scheduling to occur while the workload is being executed. The static method needs 
prior knowledge of the VM's performance and once the load has been assigned to a 
specific VM, it cannot be moved to any other VM, even in the event of overloading or 
resource failures [5].  

The dynamic method is best suited for distributed systems and heterogeneous cloud 
environments because it dynamically allocates workloads among VMs while taking 
into the state changes of the VMs during execution, and it is also feasible to migrate 
workloads from one VM to another in the event of any VM failures or overloading [6].  

 

Figure 1: Resource Allocation in Load Balancing 

The framework of IaaS load balancing is depicted in Figure 1. An organization sends 
the user's workloads, i.e., applications, to the DC over the Internet for processing [7]. 
Every DC contains many VMs that are installed on the top of each physical part of the 
hardware through virtualization. Hypervisors are software programs that construct 
VMs and distribute the hardware resources among them. VMs are logical machines 
that are capable of handling different applications [8]. 

An effective dynamic scheduling strategy is needed to improve IaaS performance by 
maximizing the use of DC and VMs, cutting down on load processing times and costs, 
and preventing servers from being overloaded or underutilized in an heterogeneous 
cloud platform. 
 
2. RELATED WORK 

In the past few years, many SBP and LB approaches have been proposed. This 
section describes some of the significant SBP and LB approaches related to this 
research study.  

http://www.commprac.com/


RESEARCH 
www.commprac.com 

ISSN 1462 2815 
 

COMMUNITY PRACTITIONER                                   2364                                            JULY Volume 21 Issue 07 

A fundamental static LB approach called round robin (RR) is applied circularly while 
distributing loads among several resources according to time quantum. Every load is 
given an equal amount of time to perform inside its designated time slots; if the time 
slice runs out before the load is finished, it must wait until the next time slice is 
available. Every VM receives a load under this policy to be processed. This approach 
has some shortcomings including its inability to function well in heterogeneous clouds 
due to the fact that each load varies in size and completion time, and the uneven 
distribution of workloads results in the overloading of certain VMs [9].  

Equally Spread Current Execution (ESCE) is a dynamic approach; whenever a 
workload arrives, it locates the VM with the smallest current allocations and assigns 
the workload to that VM. In other words, ESCE distributes the workloads to the VM 
that has the fewest current loads; this cycle is resumed until all of the loads have been 
assigned, and each VM receives an equal amount of loads for execution in ESCE, 
which results in good resource utilization [10]. However, this approach is only effective 
in a homogeneous cloud; it is unable to balance workloads in heterogeneous clouds, 
or those with varying levels of loads. Because it doesn't examine the size of the VM, it 
simply checks the number of current loads in each VM [11].  

A Throttled Load Balancing (TLB) strategy is an adaptive load balancing technique 
that distributes workloads between VMs according to their present capacity and 
accessibility. TLB uses a hashmap table and keeps track of all the available VMs and 
their current state, i.e., busy or available, in the hashmap. Whenever a workload 
arrives from the DC, the first VM that is available and checks whether its capacity fits 
the load size is chosen by TLB and assigned to a load for processing. The VM's status 
is then changed to busy; in this way, all the workloads are assigned to the proper VM. 
If no VM is currently available, the Data Centre Controller (DCC) queues the load and 
waits for the next available VM [12]. 

In contrast to the existing TLB method, which keeps only one component for keeping 
all the available and busy VMs, resulting in workload overhead during allocation, the 
new extended component-based TLB algorithm is composed of three VM 
components, which are 1. Reads all the available VMs 2. Keeps all the free VMs 
separately, and 3. Assigns the VM when the load arrives from the DCC. This algorithm 
has been examined in terms of DC processing time and response time compared to 
the current TLB algorithm using the CloudAnalyst simulation tool. The suggested 
approach reduces load overhead, but even though the VM has available space, only 
one load is ever assigned to it at any point in time, leaving the loads in the waiting 
state [13].  

The novel Balanced Throttled LB Algorithm is demonstrated in this work, which routes 
all arriving workloads to all available VMs according to their status, i.e., busy or 
available, in a hash map table with the aim of balancing the workload among VMs. 
The suggested methods provide a faster load response time than alternative 
algorithms when compared to the current RR, active monitoring, and TLB strategies, 
according to an analysis conducted using the CloudAnalyst simulation tool [14].  

The Throttled Modified Algorithm (TMA) modifies the current Throttled Load Balancing 
strategy by keeping both available and busy VMs separately using a different 
HashMap structure. Workload is assigned to specific VMs from the available HashMap 
table upon arrival; once the workload is allocated to a particular VM, the VM is shifted 
to the busy HashMap table. The VM is returned to an available VM after it has finished 

http://www.commprac.com/


RESEARCH 
www.commprac.com 

ISSN 1462 2815 
 

COMMUNITY PRACTITIONER                                   2365                                            JULY Volume 21 Issue 07 

processing the load. The TMA algorithm has been evaluated using the current TLB 
and RR techniques in the CLoudAnalyst simulation tool, and the results demonstrate 
that the TMA policy improves the load response time and DC processing time for each 
load. The restriction of TMA is that each VM can only have one load assigned to it at 
a time [15]. 

SBP is a method used by Service Broker for handling traffic between UserBase (UB) 
and DC. Service Brokering is a datacenter allocation policy that acts as a traffic router 
between UB and DC with the aim of routing numerous user workloads arriving from 
UB to DC, i.e., it decides which DC services the loads arriving from each user. SBP 
influences the overall performance of the IaaS cloud system [16].  

The closest datacenter policy, also known as the service proximity-based service 
broker policy (SPB-SBP), assigns the incoming loads to the datacenter with the least 
network latency or proximity, i.e., selecting the DC with the least distance from the UB 
based on the region, since each UB is present in different regions and also each DC 
is present in different regions. If more DCs are present in the same region, then this 
policy performs the random selection of DCs. The load response time and overloading 
of some DCs will rise if the randomly chosen DC has more loads and a minimal 
hardware configuration [17].  

Optimized Response Time service broker policy (ORT-SBP) assigns the incoming 
loads arriving from UB to the DC, which is likely to yield the shortest response time; 
ORT records the response time of the load that was previously serviced by the DC. 
ORT does not select the DCs that have not received any loads previously, which 
affects the balancing of loads among DCs. ORT is not suitable for a dynamic 
environment and also does not consider performance parameters like cost, resource 
utilization, and load processing time [18].  

The dynamic reconfigure routing policy uses a closest datacenter policy for finding the 
nearest DC based on the distance from UB to DC for load distribution, and in addition 
to that, it allows dynamic scaling of VMs within each DC based on the demand of the 
users. It calculates the total load capacity requirements, and based on that, it 
dynamically extends or shrinks the number of VMs in each DC to give the best load 
processing time. When a DC fails or performs poorly, this policy dynamically migrates 
its loads to another DC [19].   

The modified service broker policy is implemented in the CloudAnalyst simulation tool, 
which is used mainly for reducing response time and processing time. This policy 
follows the methods of laying eggs by the cuckoo and dumps them into an arbitrarily 
chosen nest and chooses the best nest with good quality eggs; likewise, this policy 
initially keeps loads in the randomly chosen DCs and finds the best DC that gives 
minimal response and processing time. It is examined against ORT, CDC, and RDL, 
and it gives the best overall response time than other policies [20].  

The new service brokering policy removes the drawbacks of randomly selecting DCs 
by the Service proximity-based routing policy; instead, it chooses the DC by selecting 
the minimum makespan DC using the Ant Colony Optimization policy, where the ant 
visits all the DCs and chooses the efficient DC based on its capacity and makespan 
value and stores this information for feature prediction. This policy was experimented 
with using the CloudAnalyst simulation tool with the existing ORT, CDF, and RDWL 
policies, and the result shows that the proposed policy increases efficiency by reducing 
the response and average processing time of the load [21]. 

http://www.commprac.com/


RESEARCH 
www.commprac.com 

ISSN 1462 2815 
 

COMMUNITY PRACTITIONER                                   2366                                            JULY Volume 21 Issue 07 

3. PROPOSED WORK 

3.1 Method Overview 

The main objective of the proposed study is to use application LB and service 
brokering techniques to dynamically route HTTP workloads to the appropriate DC and 
VM to handle workloads on the IaaS heterogeneous cloud computing platform. In this 
study, we have combined the proposed service brokering and LB approaches, such 
as the TALB algorithm and ECO-SBP, and evaluated their performance concerning 
RT, DCPT, cost, and ST.  

3.2 Proposed Service Brokering Policy (ECO-SBP)  

The proposed ECO-SBP is a dynamic service brokering policy that extends the 
existing closest DC policy, which always chooses the nearest DC based on its 
proximity or delay from the UserBase (UB), and overcomes the issues of random 
selection of DC by adding additional criteria to select the appropriate DC, such as its 
availability, current traffic, current capacity, current load, and makespan and also 
allocates the users loads in the order with respect to its severity value. For each load 
severity value assigned, ranging from 1 to 5, some loads should be completed within 
certain time limits; for such loads, low severity values are assigned, like one and two, 
and that load should be completed within a shorter time period, so it assigns a 
minimum target time and based on the target time, the load has been processed. 

The ECO-SBP finds all the nearby DCs using the network delay value of each DC 
from the userbase, calculates the traffic by using its communication line, and chooses 
all the DCs with less traffic based on a threshold value. Now calculate the capacity 
and present load of the DC and choose the DC with a high capacity and a lower current 
number of allocations based on some threshold value. If more DCs are found, then 
choose the DC with a lower makespan value [22]. 

3.3 Throttled Adapted Load Balancing Strategy (TALB) 

The proposed TALB policy extends the existing TLB policy by modifying the data 
structure, i.e., the way of storing the VM details in the system. TLB uses a HaspMap 
table for maintaining VMs, keeps all the available and busy VMs in a single HaspMap 
table, and stores the available and busy status of each VM in the VM status field. 
When the load arrives from the users, TLB searches the HaspMap table for available 
VMs by checking its status field. If the VMs are available and suitable for load based 
on their size, then the VM is allocated and moved on to the busy list. The limitations 
of this policy are that it can assign only one load to any VM at a particular point in time 
and also increases the searching time of the VM. 

TALB overcomes the problem of TLB by using the TreeMap structure, which can be 
partitioned into many levels to maintain the busy VM and available VM separately; i.e., 
all the available VMs, i.e., VMs not having a single load for processing, are stored in 
the available partition list, and all the busy VMs, i.e., VMs having at least one load for 
execution, are stored in the busy list. All VMs are sorted according to their capacity 
and present number of allocations, i.e., the VMs with a high capacity and a low number 
of loads are stored at the top of both the available and busy partition lists. When a load 
arrives, the TALB policy selects the first available VM from the available partition list, 
and if that VM size is suitable for the load, then that VM is allocated and moved onto 
the busy VM list. If no VM is available, then TALB searches the busy VMs for load 

http://www.commprac.com/


RESEARCH 
www.commprac.com 

ISSN 1462 2815 
 

COMMUNITY PRACTITIONER                                   2367                                            JULY Volume 21 Issue 07 

allocation and assigns the load to the suitable VM; otherwise, the load has to wait till 
the appropriate VM is found [23]. 

3.4 Methodology 

The capacity of each DC is the total capacity of all the VMs present in that DC is 
obtained by Eq. (1). 

)()(

)()(
1

ivBWivRAM

ivSTivCPUTVMTVM
n

ic



             (1) 

In the above equation, TVMc represents the total capacity of all the VMs vCPU, vST, 
vRAM, vBW represents number of virtual processors, amount of storage capacity, 
amount of main memory capacity and available bandwidth configured for a particular 
VM. The total capacity of each DC is calculated in Eq. (2). 

cpmc TotVMDCTDC *                    (2) 

Where,  cTDC  represents capacity of the DC,   represents the capacity of original 

physical machines and   represents the total capacity of the all the VMs in that DC. 
Total utilization of DC is obtained in Eq. (3). 

 



n

i

uu TotVMTDC
1

                 (3) 

Where, uTDC represents the capacity of the DC and n represents number of VMs and   

uTotVM represents utilization of each VM in a DC. The current capacity of each DC is 

attained in Eq. (4). 

ucpl TDCTDCDC 
     

         (4)    

               Where,  plDC  represents the present load of the DC and  cTDC  represents 

the total capacity of the DC and uTDC  represents the represents utilization of a DC. 

Minimum makespan value is calculated by Eq. (5). 

 miLiExtMinMin TimeMakespan  1)),((                 (5) 

Where, MakespanMin  is a lower bound of makespan that is the minimum time required by 

the DC to complete all loads. Li is the load and i represent load number. The response 

time of each DC is given in Eq. (6). 

                      lcc TDPTDRTD               (6) 

Where, cRTD refers to the response time of each DC,  cPTD  refers to the processing 

time and lTD refers to the transmission delay of the load. The DC processing time is 

computed in Eq. (7). 

)( ddcc NSNPRTDPTD 
     

         (7)   

Where,  cPTD  refers to processing time of DC,  cRTD   refers to response time of the 

DC,   and  dNP  are network propagation delay and serialization delay respectively. 

http://www.commprac.com/


RESEARCH 
www.commprac.com 

ISSN 1462 2815 
 

COMMUNITY PRACTITIONER                                   2368                                            JULY Volume 21 Issue 07 

Cost of the VM for each load is calculated based on the usage of the VM per hour 
shown in Eq. (8). 

chrsc VMVMLTVM *                 (8) 

Where, 
cTVM   refers to the total cost of the VM used by a particular load,  hrsVML  

refers to the number of utilization hours of a VM by the load and 
cVM  refers to the cost 

of the VM per hour. Overall average cost of the VM is calculated in Eq. (9). 





n

i

avg iVMCost
n

VMCost
1

)(*1                        (9) 

Where,  
avgVMCost  refers to the cost of all the loads in that VM, n refers to the number 

of loads in each VM. The total cost of executing loads can be obtained in Eq. (10). 

pcctc VMTVMLoad                             (10) 

Where,  tcLoad  refers to the cost of each load,  cTVM  refers to the cost of the VM of 

each load and  pcVM  refers to the processing cost of the load by the VM.  

3.5 Flow Diagram 

Fig. 2 illustrates the Workflow of allocating the load to the suitable DC and VM by the 
ECO-SBP and TALB approaches, respectively. The arriving workloads at the nearby 
UB from various regions are forwarded to the DCC, which calculates the load severity 
value for prioritizing it based on the completion time and forwards it to the ECO-SBP 
for finding the best DC. Once the loads are sent to the proper DC, the DC sends the 
loads to the TALB load balancer for VM allocations. 

 

Figure 2: Block Diagram of ECO-SBP and TALB 

http://www.commprac.com/


RESEARCH 
www.commprac.com 

ISSN 1462 2815 
 

COMMUNITY PRACTITIONER                                   2369                                            JULY Volume 21 Issue 07 

3.6 ECO-SBP and TALB Algorithms  

3.6.1 Algorithm - 1 //ECO-SBP 

Input: Load Identifier (Load_ID), UserBase (UB), Region, DC identifier (DC_ID)  

Output: DC Proficiency List (DC_PL), DC_ID 

For all DC Do 

Find DC_ND (Network Delay), DC_NT (Network         Traffic), DC_Size (Size), DC_CL 
(Current Load), MakeSpan (DC_MS) of each DC     

Create DC_PL (DC Proficiency List) using HashMap table  

DC_Threshold<-“NULL”, DC_PL<-DC_ID, DC_S, DC_CL, DC_NT, DC_ND, DC_MS, 
DC_Threshold 

     Update the DC_PL for each DC  

Assign the threshold values for each DC based   on the proficiency List 

If (DC_CL > = 80) then  

          DC_Threshold<-“Max”// Overloaded DC  

          DC_S<-Busy 

     Else If (DC_CL >=50 && DC_CL <=79) then  

           DC_Threshold<-“Norm”  

           DC_S<-Busy //assign normal threshold End If 

      Else If (DC_CL<50) then DC_Threshold<-“Min”   

           DC_S<-busy      

      Else If (DC_CL ==0) then DC_S<-Available  

           // set all the DCs status value as available  

      End IF  

 Sort the DC_PL for each DC based on the threshold 

 Update DC_PL   

 Return DC_PL 

End for 

For each load Do 

Assign DC_SV//Assign severity value for each   Load according to its completion time 

Calculate Target Time (Load_TT) and load Size (Load_S)      

     Choose the load with low severity value 

     For each DC in DC_PL DO       

         If (DC_Status==” Available”) then  

             If (Load_S<DC_S) then             

                 Allocate DC_ID<-Load_ID  

http://www.commprac.com/


RESEARCH 
www.commprac.com 

ISSN 1462 2815 
 

COMMUNITY PRACTITIONER                                   2370                                            JULY Volume 21 Issue 07 

                 Return DC_ID // assign loads to that DC 

DC_S<-“Busy”, Update DC_CL, Update     DC_Threshold, Update DC_PL 

               End IF 

         Else // no DC is idle or No DC is matched    then check all the busy DC 

         If (DC_Threshold ==”Min”)   then  

              If (Load_S<DC_S) then 

Allocate DC_ID<-Load_ID, Update     DC_CL, Update DC_Threshold, Update DC_PL 

                 Return DC_ID // assign loads to DC  

                End If 

         If (DC_Threshold ==”Norm”)   then  

               If (Load_S<DC_S) then  

Allocate DC_ID<-Load_ID, Update   C_CL, Update DC_Threshold 

Return DC_ID // assign loads to that DC Update DC_PL 

               End If                     

           Else  

Return -1 // Load has to wait until the suitable DC is found  

          End If End If 

End for End For 

3.6.2 Algorithm - 2 //TALB 

For each VM in the selected DC  

Assign VM<-Status = 1 // set 1 to all the available VMs 

Create TreeMap Struct//create TreeMap structure for keeping the VMs 

TreeMap Part_1, Part_2 //Partition TreeMap in to 2 levels 

  If (VM_Status==1) then 

       TreeMap.Part_1<-VM_ID 

  Else 

        TreeMap.Part_2<-VM_ID  

  End If 

//Load Allocation 

  If (UB_Load == “YES”) 

Search Treemaps_Part_1//find available VMs  

          If (VM_Capacity >Load_S) then 

               Assign VM_ID<-Load_ID 

         Else 

http://www.commprac.com/


RESEARCH 
www.commprac.com 

ISSN 1462 2815 
 

COMMUNITY PRACTITIONER                                   2371                                            JULY Volume 21 Issue 07 

Search Treemaps_ Part_2//find busy VMs 

               If (VM_Capacity >Load_S) then 

                     Assign VM_ID<-Load_ID 

               Else Wait (Load)//Load has to wait 

               End If End If End If  

End For 
 
4. RESULTS AND DISCUSSION 

4.1 Simulation Setup 

The experiment for this study was conducted using a simulation tool called 
CloudAnalyst for assessing the performance of ECO-SBP and TALB and compared 
them with three service brokering policies such as SPB-SBP, ORT-SBP, and RDL-
SBP, and three Load balancing strategies such as RR, ESCE, and TLB, which are 
currently used by the CloudAnalyst tool, with qualitative metrics such as RT, DCPT, 
ST, and Cost. 

CloudAnalyst is a widely used simulation tool written in the Java programming 
language for IaaS cloud computing that inspects large-scale cloud applications that 
are distributed geographically in all locations using DCs and VMs. It provides 
Graphical User Interface suitable for executing both static and dynamic LB and SBP 
policies and also supports the scheduling of several heterogeneous resources for 
workload processing [10].  

As illustrated in Fig. 3, we have used 5 DCs with 2 physical machines in each DC to 
demonstrate the tests. Under these DCs, 60 VMs with various physical specifications 
have been built, and 12 UBs with varied loads of different sizes have been tested. 

 

Figure 3: UserBase and Datacenter Configurations 

http://www.commprac.com/


RESEARCH 
www.commprac.com 

ISSN 1462 2815 
 

COMMUNITY PRACTITIONER                                   2372                                            JULY Volume 21 Issue 07 

Fig. 4 shows the inclusion of the proposed ECO-SBP and TALB policies in the 
CloudAnalyst simulation tool, and they are simulated in a large-scale heterogeneous 
IaaS cloud environment. 

 

Figure 4: ECO-SBP and TALB in CloudAnalyst Tool 

4.2 Experimental Results and Analysis 

Fig. 5 shows the results after simulating the ECO-SBP and TALB in CloudAnalyst. The 
line from the UB to the DC shows that the loads of the UB were allocated to that DC 
when the loads arrived at each UB, and the RT of each UB was measured with the 
average, minimum and maximum RT of each load from various UBs displayed within 
the boxes in each UB. 

 

Figure 5: Response Time of Each UB in CloudAnalyst Tool 

http://www.commprac.com/


RESEARCH 
www.commprac.com 

ISSN 1462 2815 
 

COMMUNITY PRACTITIONER                                   2373                                            JULY Volume 21 Issue 07 

The RT, DCPT, Cost, and ST for each brokering policy including SPB-SBP, ORT-SBP, 
RDL-SBP, and ECO-SBP as well as each load balancing strategy including RR, 
ESCE, TLB, and TALB are shown in Figs. 7, 8, 9, and 10. It shows that SPB-SBP with 
all load balancing strategies yields a longer response time than the other three 
policies. 

In contrast to other service brokering policies with other load balancing policies, the 
proposed ECO-SBP policy with the TALB load balancing strategy yields a minimum 
response time, minimal datacenter processing time , reduction in cost given in dollar($) 
and takes less searching time for finding the best VM than the other three policies.  

 

Figure 6: Response Time of SBP with LB 

 

Figure 7: Datacenter Processing Time of SBP with LB 

0

100

200

300

400

500

600

RR ESCE TLB TALB

Datacenter Processing Time

SPB-SBP

ORT-SBP

RDL-SBP

ECO-SBP

http://www.commprac.com/


RESEARCH 
www.commprac.com 

ISSN 1462 2815 
 

COMMUNITY PRACTITIONER                                   2374                                            JULY Volume 21 Issue 07 

 

Figure 8: Total VM and DC Processing Cost of SBP with LB 

 

Figure 9: Searching Time of SBP with LB 

The main aim of ECO-SBP and TALB is to select the best DC and VM for each load 
in order to reduce each load's ST, RT, and DCPT, save costs, and achieve efficient 
resource utilization with the given available resources. 
 
5. CONCLUSION 

Service Brokering and Load Balancing techniques are the most vital resource 
scheduling techniques in IaaS cloud computing systems for the efficient allocation of 
datacenter and virtual machines respectively. This paper mainly focuses on examining 
the proposed dynamic ECO-SBP service brokering policy and TALB Load Balancing 
algorithm with some of the existing significant policies using CloudAnalyst simulation 
tools and the comparisons done with respect to the performance metrics such as loads 
response and processing time, cost of executing the loads and searching time of 
resource allocation. The ECO-SBP policy process the loads in the order of their 
severity values and chooses the DC with respect to its suitability of the load such as 
its capacity, present load, Markesan and TALB algorithm finds the best VM with less 
time for the purpose of minimizing the searching time of each VM, achieves minimum 
response time, loads processing time, and cost. 

 

0

10

20

30

40

50

60

70

80

RR ESCE TLB TALB

Total Cost

SPB-SBP

ORT-SBP

RDL-SBP

ECO-SBP

http://www.commprac.com/


RESEARCH 
www.commprac.com 

ISSN 1462 2815 
 

COMMUNITY PRACTITIONER                                   2375                                            JULY Volume 21 Issue 07 

References 

1) S. Sefati, M. Mousavinasab, and R. Zareh Farkhady, “Load balancing in cloud computing 
environment using the grey wolf optimization algorithm based on the reliability: Performance 
evaluation,” The Journal of Supercomputing, vol. 78, no. 1, pp. 18–42, May 2021.  

2) S. Talwani et al., “Machine-learning-based approach for virtual machine allocation and migration,” 
Electronics, vol. 11, no. 19, p. 3249, Oct. 2022. doi:10.3390/electronics11193249  

3) S. Wiriya, W. Wongthai, and T. Phoka, “The enhancement of logging system accuracy for 
infrastructure as a service cloud,” Bulletin of Electrical Engineering and Informatics, vol. 9, no. 4, 
pp. 1558–1568, Aug. 2020. doi:10.11591/eei.v9i4.2011  

4) S. R. Gundu, C. A. Panem, and A. Thimmapuram, “Real-time cloud-based load balance algorithms 
and an analysis,” SN Computer Science, vol. 1, no. 4, May 2020.  

5) M. P. Yadav, N. Pal, D. K. Yadav, “Workload prediction over cloud server using time series data”, 
Proceedings of the 11th International Conference on Cloud Computing, Data Science & 
Engineering (Confluence), Jan 28 2021, pp. 267-272, IEEE. 

6) R. Rajak, A. Choudhary, and M. Sajid, “Load balancing techniques in Cloud platform: A systematic 
study,” International Journal of Experimental Research and Review, vol. 30, pp. 15–24, Apr. 2023.  

7) Challa M, Sudha D. An efficient approach for minimization of energy and makespan in cloud 
computing. Annals of the Romanian Society for Cell Biology. 2021 Jun 3;25(6):7422-30. 

8) D. A. Shafiq, N. Z. Jhanjhi, and A. Abdullah, “Load balancing techniques in cloud computing 
environment: A Review,” Journal of King Saud University - Computer and Information Sciences, 
vol. 34, no. 7, pp. 3910–3933, Jul. 2022. doi:10.1016/j.jksuci.2021.02.007   

9) Y. Lohumi et al., “Load balancing in cloud environment: A state-of-the-art review,” IEEE Access, 
vol. 11, pp. 134517–134530, 2023.  

10) A. Y. Ahmad and A. Y. Hammo, “A comparative study of the performance of load balancing 
algorithms using cloud analyst,” Webology, vol. 19, no. 1, pp. 4898–4911, Jan. 2022.  

11) A. Singh and R. Kumar, “Performance evaluation of load balancing algorithms using cloud analyst,” 
2020 10th International Conference on Cloud Computing, Data Science &amp; Engineering 
(Confluence), Jan. 2020.  

12) El Karadawy, A.I., Mawgoud, A.A. and Rady, H.M., 2020, February. An empirical analysis on load 
balancing and service broker techniques using cloud analyst simulator. In 2020 International 
Conference on Innovative Trends in Communication and Computer Engineering (ITCE) (pp. 27-
32). IEEE. 

13) A. Belgacem, K. Beghdad-Bey, H. Nacer, and S. Bouznad, “Efficient Dynamic Resource Allocation 
Method for Cloud Computing Environment,” Cluster Computing, vol. 23, no. 4, pp. 2871–2889, 
Feb. 2020.  

14) S. Y. Mohamed, M. H. Taha, H. N. Elmahdy, and H. Harb, “A proposed load balancing algorithm 
over cloud computing (balanced throttled),” International Journal of Recent Technology and 
Engineering (IJRTE), vol. 10, no. 2, pp. 28–33, Jul. 2021. doi:10.35940/ijrte.b6101.0710221  

15) Elnagar, N.G., Elkabbany, G.F., Al-Awamry, A.A. and Abdelhalim, M.B., 2022. Simulation and 
performance assessment of a modified throttled load balancing algorithm in cloud computing 
environment. International Journal of Electrical & Computer Engineering, 12(2), pp.2087-2096. 

16) Shahid MA, Alam MM, Su’ud MM. Performance evaluation of load-balancing algorithms with 
different service broker policies for cloud computing. Applied Sciences, 2023 Jan 26;13(3):1586. 

17) J. Bisht and V. V. Subrahmanyam, “Improvising service broker policies in Fog Integrated Cloud 
Environment,” International Journal of Communication Networks and Distributed Systems, vol. 28, 
no. 5, p. 534, 2022. doi:10.1504/ijcnds.2022.125360  

18) A. H. Zamri, N. S. Pakhrudin, S. Saaidin, and M. Kassim, “Equally spread current execution load 
modelling with optimize response time brokerage policy for cloud computing,” International Journal 
of Advanced Computer Science and Applications, vol. 14, no. 2, 2023. 
doi:10.14569/ijacsa.2023.0140257  

http://www.commprac.com/


RESEARCH 
www.commprac.com 

ISSN 1462 2815 
 

COMMUNITY PRACTITIONER                                   2376                                            JULY Volume 21 Issue 07 

19) M. Al-Tarawneh and A. Al-Mousa, “Adaptive user-oriented fuzzy-based service broker for Cloud 
Services,” Journal of King Saud University - Computer and Information Sciences, vol. 34, no. 2, 
pp. 354–364, Feb. 2022. doi:10.1016/j.jksuci.2019.11.004  

20) Nazir, S. et al. (2018) ‘Cuckoo optimization algorithm based job scheduling using cloud and Fog 
computing in smart grid’, Advances in Intelligent Networking and Collaborative Systems, pp. 34–
46. doi:10.1007/978-3-319-98557-2_4.  

21) Raghuwanshi, S. and Kapoor, S., 2018. The new service brokering policy for cloud computing 
based on optimization techniques. Int. J. Eng. Tech., 4, pp.481-488 

22) Subramanian, S. and Natarajan, P. (2024) ‘Efficient criticality oriented service brokering policy in 
cloud datacenters’, International Journal of Electrical and Computer Engineering (IJECE), 14(2), 
p. 2024. doi:10.11591/ijece.v14i2.pp2024-2034.  

23) S. Shanmugapriya and N. Priya, “The proposed it-talb in infrastructure as a service  cloud,” Indian 
Journal Of Science And Technology, vol. 17, no. 16, pp. 1654–1662, Apr. 2024. 
doi:10.17485/ijst/v17i16.3274. 

http://www.commprac.com/

