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Abstract 

Personalized medicine aims to provide patients with treatments tailored to their individual genetic 
makeup. Artificial intelligence (AI) has emerged as a key tool to enable personalized medicine by 
discovering patterns in genetic data and developing predictive models for treatment outcomes. This 
paper reviews the use of AI for personalized medicine, focusing on applications in 
pharmacogenomics, rare disease diagnosis, and tailoring cancer treatments based on tumor genetics. 
Challenges and opportunities around data sharing, model interpretability, and ethical considerations 
are also discussed. Ultimately, AI promises to unlock the full potential of personalized medicine and 
improve patient outcomes by providing the right treatment to the right patient at the right time. 
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1. INTRODUCTION 

The concept of personalized medicine has gained significant interest in recent years. 
Unlike the traditional "one-size-fits-all" approach to medicine, personalized medicine 
aims to provide care tailored to an individual based on their genetic makeup as well 
as lifestyle and environmental factors [1]. This approach holds great promise - by 
understanding the molecular underpinnings of disease for a specific patient, 
interventions can be better targeted to maximize efficacy while minimizing side 
effects. However, realizing personalized medicine at a large scale requires sifting 
through vast amounts of heterogeneous data to find meaningful patterns that can 
guide medical decisions. This is where artificial intelligence (AI) has emerged as an 
indispensable tool. 

AI refers broadly to computational techniques that enable machines to perform tasks 
that typically require human intelligence, such as visual perception, speech 
recognition, and decision making [2]. In healthcare, AI can extract insights from the 
deluge of multimodal patient data to support personalized diagnostics and 
therapeutics. Already, applications of AI in personalized medicine have 
demonstrated tremendous potential in shaping the future of healthcare. This paper 
reviews state-of-the-art AI techniques powering personalized medicine, focusing on 
three key areas - pharmacogenomics, rare disease diagnosis, and optimization of 
cancer treatments using tumor genetic profiles. Challenges around patient data 
sharing, model interpretability, and ethical considerations are also discussed. 

Table 1: Summary of AI Techniques for Pharmacogenomics Applications 

Technique Key Features Examples 

Neural networks 
Learn complex gene-drug relationships from 
large datasets 

PhGEN [4], rampRNN 
[5] 

Multitask learning 
Leverage connections across related tasks to 
enhance main prediction 

Drug sensitivity 
prediction [11]  

Multimodal integration 
Combine diverse data types (genomics, 
chemical, clinical) 

Polygenic warfarin 
dosing [8]  
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Figure 1: The Interprofessional Pharmacogenomics (IPGx) Model 

1.  A patient with polypharmacy is referred to the IPGx clinic.  

2.  The interprofessional team gathers pertinent medical history, focusing on 
details pertaining to chief complaints. This includes a history of care 
transitioning from primary care to the IPGx. The Clinical Semantic Network is 
used to examine this data in order to find complaints that may have 
pharmacological root causes.  

3a. Pharmacogenomic profiling is carried out when necessary. 3b. Pharmacokinetic 
profiling is carried out when necessary.  

4.  The referring physician receives a medication management report that lists 
complaints of possible pharmacological root causes and offers 
recommendations for substitute drugs or changes to the drug regimen.  

5.  All clinical, bioanalytical, and biological specimen data are placed into a 
pharmacogenomic research registry (clinical-genomic database) if the patient 
decides to provide informed consent. 

 
2. AI ENABLING PERSONALIZED PHARMACOGENOMICS 

Pharmacogenomics refers to understanding how genetic variation impacts individual 
drug response, including efficacy and potential adverse events. While the standard 
of care today still uses the trial-and-error approach to determine optimal drug choice 
and dosage, pharmacogenomics promises the ability to anticipate the right 
medication for a patient from the outset of treatment [3]. AI can accelerate the 
realization of pre-emptive, genetically-guided prescription by discovering new 
connections between pharmacogenes, drug response phenotypes, and mechanisms 
of actions from large-scale biomedical data. 
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Figure 2: Personalized Pharmacogenomics 

Several studies have explored machine learning for predicting drug effects based on 
gene expression data. For instance, Huang et al. developed a neural network model 
called PhGEN that maps gene expression patterns to cell line sensitivity against 
various therapeutic compounds [4]. By learning implicit relationships between 
genomic profiles and drug response, PhGEN achieved high accuracy in predicting 
whether a compound inhibits growth in a tumor cell line. More recently, rampRNN, a 
recurrent neural network model designed specifically for pharmacogenomic data, 
demonstrated state-of-the-art performance in inferring gene-drug interactions [5]. 
Besides gene expression data, advanced AI techniques also show promise in 
integrating different modalities of pharmacogenomics data - spanning cell line 
sensitivity, chemical properties, protein structures - to better predict medication 
response for patients [6]. 

On the translational side, AI-guided polygenic models have been clinically validated 
to predict warfarin dosing based on multiple genetic variants affecting drug 
metabolism [7][8]. Warfarin is an anticoagulant with significant variation in optimal 
dose between individuals owing partially to genotypic differences. Previously, 
variants in just two genes (CYP2C9 and VKORC1) were used to guide warfarin 
prescription. However, AI models incorporating additional variants now provide 
superior dose prediction to minimize bleeding risks for patients, demonstrating the 
benefit of AI in translating pharmacogenomics findings into precision medicine [9]. 

Besides predicting medication response, AI also assists in discovering new genetic 
markers of drug safety and efficacy. For example, imatinib is an anticancer drug with 
severe side effects in some patients. Using AI to analyze gene expression data from 
imatinib-sensitive and resistant tumors revealed ENTPD5 as a potential biomarker 
for patient stratification [10]. Recently, Yang et al. employed multi-task neural 
networks to impute missing heritability of drug response, identifying previously 
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unknown gene markers associated with altered medication sensitivity [11]. Together, 
these works highlight the power of AI in mining big pharmacogenomics data to both 
build predictive models as well as discover new genomic signatures for precision 
prescription. 

Table 2: AI-assisted Prediction of Warfarin Dosing 

Model Genes Considered Key Features Performance (r2) 

Clinical Factors Only - Age, BMI, amiodarone use 0.4 

CYP2C9, VKORC1 2 Guidelines recommended 0.5 

Polygenic Model [9]  30+ Genome-wide variants 0.6 

 

Figure 3:  Prediction of Warfarin Dosing 
 
3. AI-ASSISTED DIAGNOSIS FOR RARE DISEASES 

Rare diseases pose a major challenge for traditional diagnosis methods, as the 
limited number of cases restricts statistical power while the myriad of genetic factors 
confounds simple rules-based approaches. Motivated by this challenge, AI has been 
widely explored to support diagnosing rare diseases - from autism spectrum disorder 
to primary immunodeficiency - by learning informative yet generalizable patterns 
from genetic data. 

Various machine learning models have shown promising results in classifying rare 
diseases using genome sequencing data. For example, support vector machines 
trained on copy number variant profiles can identify Prader-Willi syndrome and 
Angelman syndrome samples with over 97% accuracy [12]. For diagnosing complex 
disorders, deep neural networks excel at integrating diverse genetic factors, 
incorporating both common and rare variants affecting disease pathology. Recently, 
Xuan et al. developed a convolutional neural network called Discover that leverages 
a hybrid mechanistic-data driven approach to classify rare diseases [13]. By first 
curating disorder-specific gene sets through mechanistic analysis before training 
end-to-end on sequencing data, Discover achieved expert-level performance in 
diagnosing rare kidney disorders while providing interpretable syndrome-gene 
mappings. 
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Oncoflowers, another hybrid AI framework combines deep neural networks with 
biological domain knowledge for predicting pediatric cancer types [14]. By 
representing each tumor sample as an "oncoflower" capturing genomic alterations in 
relevant cancer driver genes, Oncoflowers outperformed conventional deep learning 
models in classifying rare pediatric brain tumors. Besides categorizing disorders, 
deep learning also assists in data-driven disease subtyping by identifying novel 
patient groups based on genetic profiles. For example, TEAM (Technique for 
Evaluating Atypical Mutations) is an unsupervised clustering method employing 
autoencoders to stratify samples with atypical disease mutations [15]. Applied to 
autism spectrum disorder genomes, TEAM revealed distinct subtypes with 
differential clinical severity - demonstrating the value of AI phenotyping in mapping 
genotype to actionable precision medicine insights. 

While significant advances have been made in applying AI to rare disease diagnosis, 
most existing works focus exclusively on genetic data. A key future direction is 
effectively integrating sequencing profiles with electronic health records (EHRs) 
containing patient symptoms, medical history, and imaging data [16]. Multimodal 
machine learning models to connect genomic variants with clinical trajectory data 
promise to provide more accurate and holistic diagnosis accounting for the full 
spectrum of factors driving rare disease pathology. 

Table 3: AI methods for Rare Disease Diagnosis 

Method Disease Approach Performance 

SVM [12]  Angelman Syndrome Copy number variant profiles 97% accuracy 

Discover [13]  Kidney disorders 
Mechanistic gene sets + deep 
learning 

Expert-level AUPRC 

Oncoflowers [14]  

Pediatric brain 
cancer 

Driver gene expression + 
neural networks 

90% AUROC 

 
4. OPTIMIZING CANCER TREATMENT USING TUMOR GENETIC PROFILES 

Precision oncology represents a prime application for personalized medicine, as 
cancer treatment can be adapted based on the genetic alterations driving tumor 
growth in individual patients. AI shows immense opportunities to optimize therapeutic 
decisions by accurately matching tumor molecular profiles with effective drug 
regimens [17]. From targeted agents to immuno-oncology, AI enables genetic-guided 
treatment for improved clinical outcomes. 

In lung cancer, modelling somatic mutations in oncogenes like EGFR has steered 
deployment of specific tyrosine kinase inhibitors to drive tumor regression while 
minimizing toxicity. Recently, Yao et al. developed DeepLung, an AI framework 
combining tumor genomic data, drug response information, and chemical properties 
of therapeutic compounds to predict personalized treatments [18]. By accounting for 
individual mutation profiles, DeepLung consistently outperformed conventional 
precision medicine approaches in identifying targeted therapies and combination 
strategies for non-small cell lung cancer patients. 

Besides genetic mutations, AI applied to gene expression signatures also guides 
more effective treatment options. For example, chemotherapy benefit in early-stage 
breast cancer is primarily determined through clinical-pathologic markers like tumor 
size and grade. However, substantial heterogeneity still exists within the assigned 
risk groups. To resolve this, miReader leverages microarray data profiling breast 
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cancer transcriptomic heterogeneity to predict chemotherapy response at an 
individualized level, outperforming guidelines relying solely on clinic-pathologic 
criteria [19]. Similarly for immunotherapy, identifying patients likely to respond to 
checkpoint inhibitors based on pretreatment tumor gene expression remains an open 
challenge [20]. Recently, both supervised and unsupervised deep learning models 
have shown initial success in deriving transcriptomic biomarkers of immuno-
oncology response [21][22], though additional work is required to clinically validate 
such gene signatures. 

Advancements in cancer genomics have also expanded the molecular space for 
therapeutic targeting, including histone modifications and DNA topology enzymes. 
By screening connections between genomic alteration patterns and drug sensitivity, 
AI can match patients with novel targeted agents based on predictive response 
signatures specific to the individual's tumor genome [23]. As cancer genomes grow 
more complex, AI promises to continue unlocking personalized insights - from target 
discovery to biomarker development to treatment selection - to advance precision 
oncology. 

Table 4: AI Guiding Cancer Precision Genomics 

Application Tumor Type Model Key Idea 

Targeted therapy 
selection [18] 

Lung cancer DeepLung 
Predict efficacy based on 
mutation profile 

Chemotherapy benefit 
prediction [19] 

Breast cancer miReader 
Gene expression predicts 
response 

Immunotherapy 
biomarkers [21] 

Melanoma Deep learning Transcriptomic subtyping 

Target/biomarker 
discovery [23]  

Leukemia GAN 
Find sensitivities in alteration 
space 

 
5. CHALLENGES AND OPPORTUNITIES 

While great strides have been made, multiple challenges remain to translate the full 
potential of AI in personalized medicine into clinical impact. 

One significant need is infrastructure supporting seamless data sharing across 
institutional boundaries to enable large-scale federated learning [24]. Though 
initiatives like the All of Us Research Program have advanced multi-site data 
aggregation, significant barriers persist around patient privacy that restrict 
decentralized training of machine learning models on sensitive health data [25]. 
Improving open standards for accessibility while preserving confidentiality will be key 
in motivating data sharing crucial to realize AI's full potential in areas like 
pharmacogenomics and precision oncology [26]. 

Another major challenge is enhancing model interpretability to drive clinician 
adoption and trust [27]. Complex AI models providing personalized insights must 
produce explainable rationale linking predictions to driving features recognizable 
based on expert biomedical understanding. Hybrid approaches combining 
mechanistic biological knowledge with data-driven learning show promise toward 
improving model transparency and causality [13]. Still, additional research bridging 
AI with clinical practice guidelines is essential for patient safety and responsible 
translation of AI supporting truly individualized care [28]. 
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Finally, employing AI to guide personalized medicine raises ethical considerations 
regarding equitable model development, forensic understanding of limitations, and 
collaboration with stakeholders to earn public trust [29]. Of particular concern is the 
potential to exacerbate health disparities if historically disadvantaged demographics 
are underrepresented in training data [30]. Mitigating algorithmic biases by fostering 
diversity and inclusion throughout the AI development life cycle remains imperative 
as we accelerate advancement of equitable precision medicine benefiting all patients 
[31]. 

Table 5: Opportunities and Challenges for Clinical Translation of AI 

Challenge Potential Solutions 

Data sharing Federated learning frameworks [24]  

Interpretability Incorporate domain knowledge [13]  

Ethics Foster trust through stakeholder engagement [29]  

 
6. CONCLUSIONS 

In summary, this paper reviews state-of-the-art applications of AI unlocking the 
promises of personalized medicine through precision diagnostics and tailored 
treatments based on individual genetic data. Looking ahead, we expect continued 
progress in making AI models more accurate, efficient, and interpretable to provide 
key decision support tailored to the unique molecular profile of each patient. With 
appropriate governance to ensure ethical development, AI paves the way toward 
democratized access to the right therapeutics for the right patients to improve 
outcomes across the entire healthcare ecosystem. Genetic medicine powered by AI 
heralds a bold vision of the future where superior wellness and longevity can be 
achieved through truly personalized care. 
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