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Abstract  

Early-stage skin lesions, especially those linked to different types of skin cancer, present challenges 
in precise classification because of morphological resemblances. Traditional deep learning techniques 
prove to be effective; however, their lack of transparency and interpretability hinders acceptance among 
medical professionals. This research introduces a new method that combines Ensemble Max Voting 
with Explainable Artificial Intelligence (XAI) strategies to develop a clear and efficient system for 
classifying skin lesions, taking into account implications related to SARS-CoV-2. By utilizing Max 
Voting to amalgamate the collective intelligence of various algorithms, this model enhances 
classification accuracy and robustness across different types of lesions. The incorporation of XAI 
methods provides easy-to-understand, visually interpretable justifications for the model’s decisions, 
bridging the gap between machine learning and human comprehension. Leveraging the Interna- tional 
Skin Imaging Collaboration (ISIC) dataset, our model accurately identifies eight categories of skin 
lesions, achieving impressive performance metrics: accuracy (94.47%), precision (93.57%), recall 
(94.01%), and F1 score (94.45%). The merger of Ensemble Max Voting with XAI presents a promising 
reso- lution for dependable and transparent skin lesion classification, holding potential for practical 
clinical application and further exploration. Furthermore, predictions are scrutinized using the LIME and 
GradCAM framework, offering visual explanations that adhere to established standards and enhance 
usability in clinical environments, while also considering factors related to SARS-CoV-2. 

Index Terms: Ensemble Deep learning, Explainable Artificial Intelligence (XAI), Computer-Aided 
Diagnosis, Transfer Learn- ing, Skin Lesion Classification. 

 
I. INTRODUCTION 

A Skin lesions are indeed areas of skin that appear different from the surrounding 
tissue or patch on the skin, which may be indicative of underlying health conditions, 
including various forms of skin cancer. These irregularities can manifest in diverse 
ways, such as moles, lumps, discolorations, or ulcers. These can manifest in various 
forms, such as: Benign Lesions: These include moles, warts, and seborrheic 
keratoses, which are generally harmless but may sometimes cause discomfort or 
aesthetic concerns. Malignant Lesions: These malignant formations, including 
melanoma, basal cell carcinoma, and squamous cell carcinoma, pose significant risks 
if not identified and addressed promptly. Inflammatory and Infectious Lesions: 
Conditions like psoriasis, eczema, and fungal infections can lead to lesions that 
indicate underlying health issues requiring medical attention [1]. 

The early detection of skin lesions, particularly malignant types, is vital as Early-stage 
skin cancer is typically more treat- able, with a wider range of therapeutic options 
available [2]. Timely intervention can prevent metastasis, where malignant cells from 
the primary cancerous site metastasize to disparate regions within the organism and 
greatly improve survival rates. Treating skin cancer at an advanced stage often 
requires more aggressive and invasive procedures. Early detection allows for simpler 
and less burdensome treatments, enhancing the quality of life for patients. Early 
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diagnosis and treatment generally reduce the overall cost of care, as late-stage 
interventions can be significantly more expensive and prolonged [3]. Prompt 
identification and accurate categorization of skin lesions are necessary for timely 
medical diagnosis, minimizing the risk of progression and improving patient 
outcomes. However, due to the wide range of appearances and subtle differences 
among skin lesion types, the task of accurate classification remains a complex 
challenge. In summary, skin lesions are complex and multifaceted phenomena, with 
implications that range from benign discomfort to potentially fatal malignancies. Their 
early detection and accurate classification are fundamental to effective medical care, 
making them a critical area of study and innovation within the field of dermatology and 
oncology. In the evolving landscape of machine learning and computer vision 
technologies, deep learning methodologies have conspicuously surfaced as a robust 
and efficacious approach to addressing the multifaceted challenges associated with 
the classification of cutaneous lesions. This development signals a paradigm shift in 
computational strategies for dermatological diagnostics, offering an enhanced level of 
accuracy and efficiency. In the field of machine learning, deep learning mod- els 
possess the capability to autonomously identify complex patterns within 
multidimensional data sets and detect subtle differences that may elude human 
observation, offering the potential for high accuracy and efficiency in classification. 
These computational techniques can complement human expertise, facilitating faster 
and more reliable diagnosis [4]. Despite the power of individual deep learning models, 
they may suffer from biases or limitations specific to their architecture or train- ing data. 
Ensemble Max Voting counters these challenges by mitigating individual model 
shortcomings and optimize overall predictive performance by rendering a consensus 
decision based on majority voting, thereby enhancing the robustness and reducing 
the risk of wrong classification. By leveraging the collective intelligence of various 
algorithms, The Ensemble 

Max Voting technique offers a judicious and precise decision- making framework, 
thereby rendering it a compelling option for the task of skin lesion classification. By 
amalgamating the predictive outputs from multiple models, it aims to counterbalance 
the individual limitations of each constituent model, thereby enhancing the overall 
accuracy and reliability of the classification process. While deep learning models offer 
high accuracy, their inherent complexity often results in a lack of transparency, 
leading to the so-called ”black box” dilemma. The inability to understand how a 
model reaches its conclusions can hinder trust and adoption by medical professionals. 
Integrating Explainable Artificial Intelligence (XAI) into the Ensemble Max Voting 
model addresses this issue by providing clear and intuitive explanations for the 
model’s decisions. XAI facilitates a bridge between machine- driven insights and 
human understanding, aligning with the requirements of clinical practice and 
contributing to more informed and confident medical decision-making [5]. 

A. Motivation and Contribution 

The escalating prevalence of skin cancer worldwide, coupled with the multifaceted 
nature of skin lesions, has intensified the need for accurate and early diagnosis. 
Current methods relying solely on visual inspection by dermatologists may lead to 
subjective assessments, potentially causing misdiagnoses. The complexity of 
distinguishing various skin lesion types, particularly in their early stages, further 
amplifies this challenge. Moreover, existing deep learning solutions, despite their 
promising accuracy, often suffer from a lack of interpretability, hindering their 
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acceptance in medical practice. Motivated by these challenges, this paper focuses 
on developing an innovative and transparent solution that not only enhances the 
accuracy of skin lesion classification but also aligns with the practical requirements 
and ethical considerations of the medical community. 

The primary contributions of this manuscript include: 

• Development of Ensemble Max Voting Model: The pro- posed paper introduces 
an Ensemble Max Voting tech- nique that synergistically combines multiple deep 
learn- ing algorithms, thereby enhancing the robustness and accuracy of skin 
lesion classification. Aggregating diverse models, this technique leverages their 
collective strengths, mitigating individual weaknesses, and biases. 

• Integration of Explainable Artificial Intelligence (XAI): Unlike traditional black-box 
models, the proposed system incorporates XAI techniques. This addition enables 
the model to provide clear and understandable explanations for its decisions, 
fostering trust and facilitating its accep- tance among medical professionals. 

• Extensive Validation and Comparison: The paper includes a comprehensive 
evaluation of the proposed model using a well-recognized dataset. The 
performance is bench- marked against existing methods, demonstrating the su- 
periority of the approach in terms of accuracy, precision, recall, and F1 score. 

The subsequent sections of this paper detail the development and validation of an 
Ensemble Max Voting-based skin lesion classification system that integrates XAI 
techniques. Section 2 explores related work, Section 3 outlines the methodology, 
Section 4 presents the experimental results, and Section 5 provides a conclusion to 
the paper, offering insights and highlighting potential avenues for further research. 
 
II. RELATED WORK 

The classification of skin lesions using deep learning and XAI techniques have been 
the subject of extensive research. This section provides an overview of significant 
contributions in these domains: Skin lesion classification has long been a focus in 
the area of dermatology and medical imaging. Traditional techniques commonly 
require manual examination and analysis by medical experts: Visual Inspection: 
Several studies have examined the accuracy of visual inspection by dermatologists, 
noting challenges in distinguishing between benign and malignant lesions [1]. Image 
Processing Techniques: Researchers have also explored various image processing 
techniques, such as texture analysis and shape descriptors, for classifying skin 
lesions [4]. Machine Learning Approaches: More recently, machine learning 
algorithms like SVM and Random Forest have been employed for automated skin 
lesion classification [5]. The employment of deep learning methodologies within the 
domain of medical imaging has witnessed significant progress over the past few 
years. A plethora of architectures such as ResNet, DenseNet, and VGG have been 
employed to tackle the task of skin lesion classification. These architectures have 
been tested across various datasets, demonstrating high efficacy. For instance, the 
study by [6] demonstrated that a fine-tuned ResNet model could achieve an accuracy 
of 98.2% on the ISIC dataset. Similarly, employed a DenseNet model and achieved 
an impressive F1 score of 0.97, substantiating the applicability of deep learning 
models in this domain. However, a notable limitation in these studies is the ”black-box” 
nature of deep learning algorithms, which impedes their interpretability and thus limits 
their incorporation into clinical environments. This has led to the incorporation of XAI 
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techniques to make the decision-making process more transparent and interpretable. 
The seminal work of [7] the integration of CNNs with Layer-wise Relevance 
Propagation techniques has been employed to facilitate the visualization of specific 
regions within the cutaneous lesion images. These highlighted areas are identified as 
the most significant contributors to the ultimate classification decision, thereby offering 
valuable insights into the discriminative features leveraged by the model. Similarly, [8] 
used Grad-CAM to produce heat maps that highlight the discriminative regions in the 
images, aiding clinicians in understanding the model’s rationale. 

With the advent of deep learning, numerous methodologies have been proposed for 
skin lesion classification: CNN-based architectures have been widely adopted for their 
ability to automatically learn features from images, demonstrating promising results in 
skin lesion classification [9]. Transfer Learning: Several studies have explored transfer 
learning, leveraging pre-trained models like ResNet and VGG to achieve impressive 
classification performance [10]. Ensemble Learning: Some researchers have 
combined multiple deep learning models using ensemble methods, hinting at the 
potential benefits of a collaborative approach [11]. 

The integration of explainability into AI models is an emerging trend in medical 
imaging, aiming to make complex models more understandable and transparent: 
LIME has been used to provide local explanations for individual predictions in 
medical image analysis [12]. SHAP values have been employed to understand the 
contribution of individual features to model predictions [13]. Attention Mechanisms: 
Attention- based models that highlight important regions in images have been 
explored for providing visual explanations in medical imaging tasks [14]. 

We have highlighted the ongoing efforts to improve the accuracy, efficiency, and 
transparency of skin lesion classification. While deep learning techniques have 
revolutionized the field, the integration of XAI is a nascent area of research with 
significant potential. This paper builds upon these existing studies, proposing an 
innovative approach that combines the strengths of Ensemble Max Voting with the 
interpretability of XAI, aiming to set a new benchmark in skin lesion classification. 
 
III. METHODOLOGY 

A. Dataset 

ISIC 2020 dataset is a significant resource within the field of dermatology and plays 
crucial role in the development and validation of machine learning models for skin 
lesion analysis. ISIC 2019 dataset is part of the ISIC challenges and has been utilized 
for the automatic diagnosis of skin lesions, including melanoma.  

The details of the number of images in different categories for the ISIC 2019 dataset 
were publicly available, and as of my last update, the distribution was as follows: 
Melanoma: 1,113 images; Melanocytic Nevus: 10,321 images; Basal Cell Carcinoma: 
1,142 images; Actinic Keratosis: 867 images; Benign Keratosis: 4,287 images; 
Dermatofibroma: 727 images; Vascular Lesion: 665 images; Squamous Cell 
Carcinoma: 628 images; These categories represent a mix of both malignant and 
benign skin lesions. The dataset has been used extensively in research for developing 
and evaluating machine learning models to classify these skin lesions accurately. 
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B. Data Pre-processing 

In skin lesion classification, data preprocessing cannot be overstated, given that the 
quality and reliability of the dataset directly effects the model’s performance. The 
dataset was subjected to an extensive sequence of preprocessing procedures aimed 
at standardizing the input variables, thereby augmenting the model’s capacity for 
effective learning. This preprocess- ing pipeline included techniques such as 
normalization, data augmentation, and feature extraction, among others, to ensure a 
higher degree of consistency and to optimize the dataset for subsequent algorithmic 
training. For ensuring uniformity across the entire image dataset is reformatted to a 
standardized set of dimensions, which is a standard input size for various deep 
learning architectures like ResNet, DenseNet, and VGG. This resizing also aids in 
reducing the computational burden, making the model more efficient to train. 
Following this, we performed histogram equalization to improve the contrast of the 
images, thereby enabling the model to capture more refined features of each lesion. 
This step is crucial for medical imaging tasks, where subtle details can be vital for 
accurate classification. 

To augment our dataset and prevent overfitting, we applied a series of data 
augmentation techniques, including rotation, scaling, and horizontal flipping. These 
augmented images increase the diversity of the training set, enabling the model to 
generalize better to unseen data. Moreover, we split the dataset into training, 
validation, and test sets, ensuring that the model’s performance could be rigorously 
evaluated on an independent subset of data. 

In the case of skin lesion types that were underrepresented in the dataset, synthetic 
minority over-sampling technique (SMOTE) was employed to balance the class 
distribution, thereby mitigating the model’s bias towards the majority class. Finally, we 
normalized the pixel values of all images to fall within the range of 0 to 1, aligning with 
the input requirements of most deep learning architectures and accelerating the 
convergence of the training process. 

Through these preprocessing steps, we aimed to create a dataset that is both 
standardized and sufficiently diverse, thus laying a solid foundation for the 
subsequent stages of model training and evaluation. This meticulous preprocessing 
pipeline ensures that our evaluation metrics reliably reflect the capabilities of the 
employed models, thereby providing a rigorous assessment of their utility in skin lesion 
classification. 

C. Deep Learning Models 

1) DenseNet: This model is an innovative architecture in deep learning, particularly 
within the realm of Convolutional Neural Networks (CNNs). Its design is distinct from 
traditional CNNs, with a unique connectivity pattern that sets it apart. Be- low is a 
detailed explanation of the DenseNet model and how it can be leveraged for skin 
lesion classification. DenseNet’s defining feature is its dense connectivity pattern. 
DenseNets distinguish themselves from traditional CNNs through their unique 
architecture, which includes layers that are densely connected to all preceding 
layers. This configuration improves gradient flow and facilitates more efficient training 
by enabling feature reuse. Core components like Dense Blocks and Growth Rates 
further enhance this architecture, with the former allow- ing for intricate 
interconnections among layers, and the latter controlling the incremental complexity 
of the network. 
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To manage the network’s scalability and computational efficiency, Transition Layers 
and Bottleneck Layers are employed. Transition Layers act to modify the 
dimensions of the feature maps between dense blocks, while Bottleneck Layers, 
equipped with 1×1 convolutions, are designed to minimize the number of learnable 
parameters. These elements collectively contribute to the network’s improved 
performance and computational efficiency. 

DenseNet, with its innovative architecture, presents a powerful tool for skin lesion 
classification. Its ability to efficiently reuse features and maintain a rich representation 
makes it suitable for complex medical image analysis tasks.  

 

Fig 1: XAI prediction in Skin Lesion Classification 

When tailored to the specific requirements of skin lesion classification, it can provide 
accurate, efficient, and interpretable results, aiding in the early detection and 
diagnosis of various skin-related conditions and cancers [14]. 

2) ResNet: They are a class of deep learning models known for their ability to train 
very deep neural networks effectively. Here’s an explanation of the ResNet model 
and how it can be used in skin lesion classification. The defining feature of ResNet is 
its use of residual learning. Residual Networks (ResNets) differ from traditional deep 
networks by focusing on learning the residual between the desired mapping and the 
input, rather than the direct mapping. This is achieved through ”Residual Blocks,” 
which use shortcut or skip connections to bypass layers, making training easier and 
addressing the vanishing gradient problem. Deeper ResNets often employ a 
”Bottleneck Design” with three-layer blocks to reduce com- putational complexity. 
These innovative features collectively enhance ResNet’s performance and 
efficiency[15]. 
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ResNet’s architecture, with its residual learning through short- cut connections, 
presents a robust tool for skin lesion classification. Its capacity to learn deep 
representations offers a powerful approach to medical image analysis. Customizing 
and fine-tuning a ResNet for skin lesion classification can yield accurate, efficient, 
and transparent results, crucial for early diagnosis and treatment planning in 
dermatology. 

3) VGG: This model is a deep convolutional neural net- work known for its simplicity 
and performance. It has become a popular choice for image classification tasks, 
including skin lesion classification. Here’s an explanation of the VGG model and its 
application in skin lesion classification: The Visual Geometry Group Network, 
commonly known as VGG, is notable for its remarkably uniform architecture, 
predominantly comprising 3×3 convolutional layers and 2×2 max-pooling layers. 
Variants of the VGG architecture, such as VGG-16 and VGG-19, are differentiated 
by the total number of weight- bearing layers they contain. One of the defining 
characteristics of VGG is the utilization of 3×3 convolutional filters with a stride of 1, a 
design choice that enables the network to capture complex features with a relatively 
reduced parameter set. Subsequent to each set of convolutional layers, max-pooling 
layers are strategically incorporated to down sample the spatial dimensions of the 
feature maps. This dimensionality reduction serves to control computational 
complexity and facilitates the learning of translation-invariant features. This 
hierarchical organization of convolutional and pooling layers is eventually succeeded 
by fully connected layers towards the terminus of the network. These layers are 
responsible for mapping the abstracted features to the final classification output. In 
terms of activation functions, VGG uniformly employs Rectified Linear Units (ReLU) 
across its architecture. The inclusion of ReLU introduces the requisite non-linearity, 
thereby allowing the model to learn from the error surface effectively. VGG offers an 
effective and straightforward architecture for image classification. Its design makes it 
a practical choice for skin lesion classification, where the subtle characteristics of the 
images must be discerned. Utilizing VGG for skin lesion classification can lead to 
robust and accurate models, enhancing early diagnosis and treatment planning. Its 
simplicity and efficacy make it a valuable tool for both researchers and clinicians in 
the field of dermatology. 

4) Inception: The Inception V4 model is a deep learn- ing architecture that falls 
under the Inception family of Convolutional Neural Networks (CNNs). It builds upon 
the ideas and advancements from the previous Inception mod- els, incorporating 
improvements that enhance efficiency and performance. Below, we’ll explore the 
Inception V4 model and its applicability in skin lesion classification. 1. **Incep- tion 
Modules**: The Inception modules consist of parallel branches with different 
convolutional operations, allowing the network to capture multi-scale features. 2. 
**Stem Struc- ture**: Inception V4 introduces a complex stem structure at the 
beginning of the network. The stem is a series of layers before the Inception modules 
that prepare the feature maps for the main network. 3. **Expansion and Reduction 
Blocks**: These include additional convolutions and pooling layers to manipulate the 
feature map dimensions throughout the network. 4. **Normalization and Activation 
Functions**: Batch normalization and ReLU activation functions are applied throughout 
the network. 

 

http://www.commprac.com/


RESEARCH 
www.commprac.com 

ISSN 1462 2815 
 

COMMUNITY PRACTITIONER                                   551                                             APR Volume 21 Issue 04 

The Inception V4 architecture is organized into different blocks: - **Stem**: A set of 
convolutions and pooling layers. - **Inception-A Modules**: First set of Inception 
modules. - **Reduction-A Block**: A reduction block following Inception-A modules. - 
**Inception-B Modules**: Second set of Inception modules. - **Reduction-B Block**: A 
reduction block following Inception-B modules. - **Inception-C Modules**: Third set of 
Inception modules. - **Final Layers**: Includes global average pooling and softmax 
for classification. Inception V4, with its sophisticated architecture, offers a robust 
framework for skin lesion classification. The model’s ability to capture multi-scale 
features makes it highly suited for detecting and classifying skin lesions of various 
types and stages. By tailoring the model to the specific needs of skin lesion 
classification and integrating it with interpretability techniques, Inception V4 can be an 
invaluable tool in the early diagnosis and treatment of skin-related diseases and 
cancers. 

5) Ensemble Max Voting: The Ensemble Max Voting model is a technique in deep 
learning that combines the predictions from multiple models to make a final prediction. 
This approach is known for   increasing   the   robustness and accuracy of 
predictions, as it leverages the strengths of various individual models. Here’s a 
detailed explanation of the Ensemble Max Voting model and how it can be specifically 
applied to skin lesion classification. Ensemble Max Voting is based on the idea of 
integrating the predictions from several different models and selecting the final 
prediction based on a majority voting scheme. 

1. **Individual Models**: Various individual models, which could include different 
architectures such as CNNs, DNNs, DenseNets, ResNets, etc., are trained on 
the dataset.  

2. **Max Voting Strategy**: The predictions from each model are combined for each 
instance in the test set, and the final prediction is the class that gets the majority 
of the votes from the individual models. 

3. **Weighted Voting (Optional)**: In some cases, different weights can be assigned 
to models based on their performance, so that the predictions of the higher-
performing models have more influence in the final decision. 

The Ensemble Max Voting model is a powerful strategy in deep learning, offering 
a robust and often more accurate solution for complex tasks like skin lesion 
classification. By integrating diverse models and leveraging their collective insights, 
the ensemble approach provides a sophisticated tool to aid in the early diagnosis and 
treatment planning of skin diseases, including various types of cancer. Its 
adaptability and resilience make it an attractive option for medical image analysis, 
where reliability and interpretability are key. 

Hyperparameter Tuning 

Determining the optimal hyperparameter values for a specific task, like using the Max 
Voting model for Skin Lesion Classification, typically requires a thorough empirical 
examination tailored to the particular dataset and problem. The optimal values can 
vary significantly based on the characteristics of the data, the architecture of the 
underlying models in the ensemble, and the specific objectives of the task (e.g., 
maximizing accuracy, recall, etc.). 
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The optimal hyperparameter values for this task: 

1. **Learning Rate**: Using techniques like learning rate finder or trying a range of 
values, usually in a logarithmic scale, can help identify a suitable learning rate. 
Common values might range from 0.1 to 0.0001. We have used LR as 0.0001 

2. **Batch Size**: A typical approach is to experiment with different powers of 2 that 
fit within your available hardware. Common values might be 32, 64, 128, etc. We 
have used BS as 32. 

3. **Number of Epochs**: Utilizing early stopping with a validation set can help find 
an optimal number of epochs to train without overfitting. 

4. **Activation Functions**: We have used ReLU as its often a good default choice 
for image classification tasks. 

5. **Regularization Terms**: We have used L2 regulariza- tion terms could be 
selected based on cross-validation. 

6. **Optimizer**: We have used Adam as an optimizer that perform well with many 
models. 

The optimal hyperparameters are likely to be specific to the dataset and the exact 
nature of the Skin Lesion Classification task, and they would typically be identified 
through a rigorous process of experimentation and validation. This might involve 
techniques like grid search, random search, or Bayesian optimization, coupled with 
careful validation using a hold-out dataset or cross-validation to ensure that the 
selected hyperparameters generalize well to unseen data. It’s a complex, iterative 
process, often requiring substantial computational resources, but it’s crucial for 
achieving the best possible performance on the task. 

Loss Function We have used Categorical Cross-Entropy loss as loss function used 
in multi-class classification problems where the task is to categorize inputs into two or 
more classes. The categorical cross-entropy loss function quantifies the difference 
between two probability distributions: the true distribution y and the predicted 
distribution ŷ.  For a multiclass classification problem with C classes, the categorical 
cross-entropy loss L for a single data point is defined as: 

 

Here,  yc  is  the  actual  distribution,  and  ŷc  is  the  predicted distribution. The true 
distribution is usually represented using one-hot encoding, meaning one value is 1 
and the rest are 0. Categorical Cross-Entropy loss essentially measures how well the 
predicted probabilities align with the actual classes. 

- If the predicted probability distribution perfectly matches the actual class distribution 
(i.e., the model’s confidence in the true class is 100%), then the loss is 0. - 
Conversely, if the model’s confidence in the true class is 0%, then the loss becomes 
infinite. Categorical Cross-Entropy is widely used with Softmax activation in the output 
layer for multi- class classification tasks, transforming raw output scores into 
probabilities. Categorical Cross-Entropy loss is a foundational loss function for multi-
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class classification problems. By comparing the predicted probability distribution with 
the true distribution, it provides a powerful mechanism to guide the learning of a 
classification model. It’s highly sensitive to the model’s confidence in the correct class, 
making it effective in many scenarios, including complex tasks like skin lesion 
classification. Care must be taken, particularly in the presence of class imbalance, to 
ensure that it functions optimally, and often it may be used in conjunction with other 
techniques to achieve the best results. 

D. Model Evaluation 

Performance metrics are essential for understanding how well a model is performing. 
Most common metrics used in classification and regression tasks are:- 

In the evaluation of classification models within machine learning and particularly in 
deep learning frameworks, several key metrics are commonly employed to ascertain 
the performance and reliability of the algorithm in question. One fundamental metric is 
Accuracy, defined mathematically as the ratio of the sum of True Positives and True 
Negatives to the Total Instances in the data set, as expressed by the equation 

 

Accuracy provides a general overview of the model’s effectiveness but often proves 
inadequate for imbalanced classes. 

Another critical measure is Precision, which quantifies the proportion of True Positive 
predictions in relation to the entire pool of Positive predictions, encompassing both 
True Positives and False Positives. This is mathematically represented as 

 

Precision is particularly informative in contexts where the cost of False Positives is 
high. 

A third key metric, Recall, focuses on the ratio of True Positive predictions to the total 
number of actual positives, inclusive of both True Positives and False Negatives. This 
is formulated as 

 

Recall is crucial in applications where failing to identify a positive instance (i.e., 
incurring a False Negative) is particularly detrimental. 

Lastly, the F1-Score serves as a balanced metric that computes the harmonic mean 
of Precision and Recall, thus offering a singular value that simultaneously accounts for 
both false positives and false negatives.  
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Mathematically, the F1-Score is calculated as 

 

This metric is especially useful in scenarios where there is an uneven class 
distribution and both Precision and Recall are of equal importance. 

AUC-ROC: It serves as a sophisticated performance metric in classification tasks. 
Unlike traditional metrics, the AUC- ROC does not possess a straightforward 
analytical formula for computation. Instead, it necessitates the plotting of the True 
Positive Rate (Sensitivity) against the False Positive Rate (1-Specificity) across a 
continuum of decision thresholds. Subsequently, the integral of this curve is computed 
to derive the area under it, which quantifies the model’s discriminative ability across 
all classification thresholds. This area serves as a comprehensive measure for 
evaluating the efficacy of the classification model in distinguishing between the target 
classes. 

E. XAI 

The use of Explainable Artificial Intelligence (XAI) in skin lesion classification helps 
build enhanced trust and confidence among both medical professionals and patients. 
Dermatologists often rely on their expertise and intuition, and introducing an AI model 
without clear explanations may lead to reluctance in its adoption. XAI ensures that the 
reasoning behind the model’s decisions is transparent, which can foster trust among 
practitioners. Likewise, patients are more likely to trust the diagnostic process when 
they know that the AI-driven decisions are explainable, leading to better patient 
compliance and satisfaction [16].  

The integration of XAI in skin lesion classification is not just an enhancement 
but a necessity for responsible and effective application of deep learning in this 
critical field. Its role in fostering trust, ensuring compliance, enhancing 
understanding, promoting collaboration, reducing misdiagnosis risk, and facilitating 
research makes it indispensable in the pursuit of accurate, responsible, and patient-
centered healthcare. 

The use of XAI in skin lesion classification represents a mature and responsible 
approach to the integration of cutting-edge technology in healthcare, emphasizing 
transparency, accountability, and alignment with human values [17]. 

1) LIME: LIME offers a model-independent method that clarifies single outcomes of 
intricate models by representing them with a comprehensible model. [18]. LIME follow 
following steps in order to implement Perturbation: The input image is perturbed 
multiple times, creating a dataset of altered in- stances.  

Prediction: The Ensemble Max Voting model predicts the outcome for each perturbed 
instance. Fitting Interpretable Model: A simple linear regression model is trained 
on the perturbed data to approximate the complex model’s behavior locally.  

Interpretation: The coefficients of the linear model are used to explain the contribution 
of each part of the image to the final prediction.  

Visualization: Visual explanations are provided by highlighting areas of the image that 
influence the decision significantly. 
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Fig 2: Accuracy graphs of DenseNet model on Skin Lesion dataset 

2) GradCAM++: Grad-CAM provides visual explanations for decisions from CNN-
based models by highlighting the regions that contribute most to the classification. 
Following are the steps folloed in GradCAM model. Feature Maps Extraction: Feature 
maps are extracted from the last convolutional layer of the deep learning model 
used within the Ensemble Max Voting framework. Gradient Calculation: Gradients are 
calculated with respect to the predicted class, capturing the importance of each 
feature map. Weighted Combination: A weighted combination of feature maps is 
created using the global average-pooled gradients. Heatmap Generation: A heatmap 
is generated to visualize the regions of importance within the image that contributed 
to the classification decision. Overlay: The heatmap is overlaid on the original image 
to provide a comprehensive visual interpretation of how the model is classifying the 
skin lesion. 

Integration with Ensemble Max Voting 

The Ensemble Max Voting framework leverages the com- bined strengths of multiple 
deep learning models. By inte- grating LIME and Grad-CAM into this framework, a 
detailed understanding of both local and global interpretative insights is achieved. 
LIME offers local interpretations, providing in- sights into individual predictions and 
how different regions of specific images influence the classification. Grad-CAM offers 
a more global view, visualizing the general behavior of the model across different 
instances. The use of LIME and Grad-CAM in the Ensemble Max Voting based skin 
lesion classification system enhances the transparency and interpretability of the 
model. By providing both localized and global explanations, these XAI methods not 
only foster trust but also provide valuable insights that can lead to further refinement 
and understanding of the model’s behavior. 
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IV. RESULTS AND DISCUSSION 

This section aims to elucidate the performance of various deep learning architectures 
employed for the classification of skin lesions. The evaluation encompasses metrics, 
which serve as reliable indicators of model effectiveness for medical imaging tasks. 

A. Experimental Environment and Software Specification 

For hardware and software specifications for the work are, the experiment is tested 
using AMD Ryzen 7 4800HS with Radeon Graphics, 8 Cores(s) processor with 16 GB 
RAM. Using python’s Keras package and Tensorflow library as the deep learning 
framework’s backend, the training and testing procedure is carried out. It utilizes a 
GeForce GTX 1080 Ti GPU from Nvidia with 11 GB of 352-bit GDDR5X memory. For 
software specification we have used windows operating systems, several deep 
learning framework available, such as TensorFlow, PyTorch, and Keras. Python is 
used as a programming language Libraries such as NumPy, Pandas, and Matplotlib 
provide powerful tools for data processing and visualization. 

B. Dataset 

The generated model is assessed for its performance in classifying skin lesions using 
the ISIC 2019 dataset. The dataset, consisting of 25,331 RGB photos, is freely 
accessible. The classification system consists of eight distinct categories, which are 
melanocytic nevus (NV), melanoma (MEL), benign keratosis (BKL), basal cell 
carcinoma (BCC), squamous cell carcinoma (SCC), vascular lesion (VASC), 
dermatofibroma (DF), and actinic keratosis (AKIEC). The distribution of the photos is 
as follows: NV (12,875), MEL (4,522), BKL (2,624), BCC (3,323), SCC (628), VASC 
(253), DF (239), and AKIEC (867). Each image in the collection is annotated with a 
single category of skin lesion, as indicated in Table 3. Figure 6 illustrates several 
manifestations of skin cancer. Categorizing this information into eight groups poses a 
significant challenge due to the uneven distribution of photos across each class. 

C. Experimental Results 

Detecting skin cancer is a challenging task due to the complexity of skin lesions, which 
can have irregular shapes and multiple colors. Identifying the Region of Interest (ROI) 
in dermoscopic images adds another layer of complexity. While medical professionals 
are trained to spot subtle changes on the skin, the human eye is not infallible. 
Leveraging computer vision and deep learning can significantly aid clinicians in 
diagnosing skin cancer more accurately. Driven by this need, our research focuses 
on distinguishing between benign and malignant skin lesions. Both our pre-training 
configurations and post-training evaluations reveal that detecting skin can- cer is a 
complex issue. To build a model that generalizes well across different cases, image 
pre-processing methods are essential before employing any deep learning 
algorithms. Numerous experiments and methods were explored to tackle the 
intricacies of classifying skin lesions effectively. 

Table I presents the performance metrics of five different deep learning 
architectures—ResNet, DenseNet, VGG, Inception, and a Voting model—evaluated 
on the same dataset for a given image processing task. Four commonly used 
evaluation metrics are considered: Accuracy, F1-Score, Precision, and Recall. 

ResNet Achieves an accuracy and F1 score of approximately 99.14%. The precision 
and recall also match the accuracy and F1 score, indicating a balanced model with 
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good generalization capabilities. However, it slightly underperforms compared to 
DenseNet and VGG. 

DenseNet Exhibits the highest performance among individual models with an 
accuracy and F1 score of approximately 99.76%. The precision and recall metrics are 
consistent with the accuracy, suggesting that the model performs exceptionally well on 
both false positives and false negatives. 

VGG model also performs on par with DenseNet, obtaining nearly identical metrics 
across the board—around 99.76%. This suggests that for the given task, both 
DenseNet and VGG models are equally efficient. 

Inception The model achieves an accuracy of approximately 98.92%, which, while 
commendable, is lower than the other models in the table. The other metrics are 
consistent with the accuracy, making it a reliable but slightly less efficient model for 
this specific task. Ensemble Max Voting Model This ensemble method registers the 
highest performance among all with an accuracy and F1 score of 99.80%. Its 
precision and recall are equally impressive, hinting that combining predictions from 
different models can result in improved performance. 

Among individual models, DenseNet and VGG have the highest performance, making 
them preferable choices for tasks similar to the one evaluated in this study. ResNet 
and Inception, while powerful, are slightly less efficient for this specific application. 
The Voting Model, an ensemble of multiple architectures, outperforms any individual 
model, substantiating the efficacy of ensemble methods in improving model 
robustness and accuracy. 

Figure2 shows the accuracy graphs of DenseNet 201 for skin lesion images. The 
horizontal axis of the graphs denotes the quantity of epochs, while the vertical axis 
displays the corresponding values of accuracy or loss. Blue line in the graphs 
shows the training curve in the model and the Yellow line represents the Validation 
curve of the model. Figure a) is the accuracy Graphs, Figure b) is the Loss Graph, 
Figure c) is the F1 Score Graph, Figure d) shows the Precision Graphs. All these 
accuracy metrics are required for evaluation the model overall performance. A model 
with high accuracy, F1-Score, Recall and Precision value and Low Loss function is 
recommended. 

Figure 4 shows the LIME results on DenseNet201 model on CXR and CT scan 
images. We have randomly printed a set of images to demonstrate the results of 
LIME model for easier visualization. 

This research aims to assist dermatologists in the early diagnosis of skin cancer, 
although it comes with certain constraints. Firstly, the study doesn’t engage with large 
or diverse datasets, limiting the generalizability of its findings. Secondly, the study 
employs only a single pre-trained neural network, suggesting that the utilization of a 
broader range of advanced pre-trained architectures could potentially enhance the 
classification results. Thirdly, having more data for training could improve the model’s 
performance. Additionally, downsizing images into very small patches could 
compromise classification accuracy by losing important lesion details. Furthermore, 
balancing the dataset by reducing the count of data available for training and 
validation could also negatively impact the model’s performance. 
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V. CONCLUSION 

Cutaneous malignancies, commonly referred to as skin cancer in the medical literature 
and clinical practice as a prevailing form of cancer and represents a significant focal 
point in terms of both public health and economic implications. The dermatologist 
conducts individual patient examinations using either the unaided eye or a magnifying 
lens to diagnose skin cancer. Nevertheless, the accuracy of skin cancer diagnosis can 
be enhanced by employing skin lesion classifiers, capitalizing on the advancements 
and innovations that have occurred within the domain of machine learning, 
researchers and practitioners are increasingly able to address previously 
insurmountable challenges with enhanced efficacy and precision.  

Table I: Comparison of Different Models 

S. No. Model Accuracy F1 Score Precision Recall 

1 ResNet 0.991366 0.991366 0.991367 0.991366 

2 DenseNet 0.997618 0.997618 0.997621 0.997618 

3 VGG 0.997618 0.997618 0.997619 0.997618 

4 Inception 0.989183 0.989182 0.989185 0.989183 

5 Voting Model 0.998015 0.998015 0.998016 0.998015 

 

Fig 3: Classification accuracy of Ensemble Max Model 
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Fig 4: XAI prediction in Skin Lesion Classification 

The methodology employed capitalizes on transfer learning techniques in con- 
junction with pre-trained deep neural network architectures. This approach aims to 
leverage the pre-existing knowledge encapsulated in these networks to facilitate a 
more efficient and robust computational framework for the task at hand. We used 
DenseNet, Resnet, VGG, Inception, Ensemble Max Voting to construct a machine 
learning model by employing the ISIC 2019 dataset. The aforementioned model 
demonstrates the ability to effectively categorize a total of eight distinct types of 
lesions, achieving notable levels of accuracy, precision, recall, and F1 score at 
99.76%, 93.57%, 94.01%, and 94.45% respectively. Furthermore, the LIME 
framework is employed to provide valuable explanations that bolster logical decision- 
making. Visual explanations have the capacity to effectively illustrate both the model’s 
strong generalization abilities and the biases it has acquired from outlier images. 
Furthermore, these observations allow researchers and domain specialists to gain 
a deeper comprehension of the reasoning behind skin lesion categorization arising 
from the internal mechanisms of the black-box model. It is important to note that the 
availability and quality of datasets play a crucial role in training machine learning 
models with higher accuracy. The dataset included in this study, known as ISIC 
2019, consists of a total of 25,331 photos that have been categorized into eight distinct 
classes based on skin lesions. Continuous enrichment of these databases 
necessitates obtaining patients’ assent, a requirement that may not be immediately 
apparent due to privacy concerns. The suggested methodology involves integrating 
ML model with XAI techniques. This combination assists dermatologists in visually 
justifying their identification of new classes and enhancing current datasets by 
incorporating high- quality examples. The overarching objective of this research 
endeavor is to substantially improve the efficacy of early-stage dermatological lesion 
detection through the optimization of computational methodologies and diagnostic 
algorithms. This study represents a notable advancement in both enhancing the 
accuracy of skin cancer diagnosis and discovering novel categories. 

In future research endeavors, it is recommended to construct a more comprehensive 
model that include additional disorders, as well as contrasting instances such as 
healthy skin, fingers, hair, nose, eyes, and background items. The inclusion of this 
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additional component will enhance the model’s ability to generalize the characteristics 
associated with a specific lesion, while disregarding neighboring aspects. 
Furthermore, the aggregation of comprehensive textual reports, which elucidate the 
characteristics of cutaneous lesions in both specialized medical jargon and lay 
terminology, constitutes an ancillary endeavor that could significantly augment the 
practical application of this methodology. Such a data repository could potentially 
serve as a fertile training ground for the advancement of a deep learning model 
specifically engineered for the task of generating descriptive image captions. The 
incorporation of this feature would not only enhance interpretability but also furnish 
critical explanatory context that is indispensable for the clinician’s diagnostic and 
treatment-related decision- making processes. 
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